Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần gia ngọc
Xem chi tiết
Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 5:31

Gọi d=ƯCLN(8n+3;6n+2)

=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)

=>\(24n+9-24n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản

Đặng Thị Anh Thư
Xem chi tiết
đoàn văn kháng
6 tháng 4 2015 lúc 7:44

gọi UCLN(5n+3; 3n+2)=d khi đó 5n+3 chia hết cho d suy ra 15n+9 chia hết cho d (1)

3n+2 chia hết cho d nên 15n + 10 cũng chia hết cho d (2)   ( dử dụng tính chất a chia hết cho m thì a.n cũng chia hết cho m)

từ 1 và 2 suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d ( tính chất chia hết của 1 tổng- hiệu). vậy d=1

vậy UCLN(5n+3; 3n+2)=1 hay phân số trên tối giản

lưu ý: để chứng minh 1 phân số tối giản ta chứng minh UCLN của tử và mẫu bằng 1. còn trong tập Z ta cm UCLN = +-1

Trần Chí Kiên
Xem chi tiết
trần trung đạt
Xem chi tiết
Tung Duong
15 tháng 2 2019 lúc 20:12

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

Huỳnh Bá Đăng Khoa
Xem chi tiết
Huỳnh Trần Thiên Trúc
Xem chi tiết
Ngạn Lâm Lộc
4 tháng 2 2018 lúc 10:11

a) Gọi ƯC(2n+1,4n+6) = d ( d thuộc Z)

Suy ra 2n+1 chia hết cho d

            4n+6 chia hết cho d

Suy ra 2(2n+1) chia hết cho d hay 4n+ 2 chia hết cho d

Suy ra 4n+ 6 - 4n - 2 chia hết cho d hay 4 chia hết cho d

Suy ra d thuộc {1;-1;2-2;4;-4}

Mà 2n + 1 không chia hết cho 2 và -2 nên d khác 2 và -2

      4n+6 không chia hết cho 4 và -4 nên d khác 4 và -4

Suy ra d chỉ có thể là 1 và -1

Vậy 2n+1/4n+6 là phân số tối giản với mọi n

b)CÓ LẼ SAI ĐẦU BÀI

Trần Thị Vân Anh
6 tháng 3 2022 lúc 16:07
Câu b sai đề á .Phải là20n +/15n- 2 chứ
Khách vãng lai đã xóa
Bùi Việt Hưng
Xem chi tiết
Tran Le Khanh Linh
27 tháng 4 2020 lúc 14:17

Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)

=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)

=> (4n+7)-(4n+6) chia hết cho d

=> 4n+7-4n-6 chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N 

=> d=1 => ƯCLN (2n+3; 4n+7)=1

=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 4 2020 lúc 14:38

Gọi d là ƯC(2n + 3 ; 4n + 7)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)

=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d

=> 2 chia hết cho d

* d = 1 => 2n + 3 chia hết cho 1

* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2

=> d = 1

=> ƯCLN(2n + 3; 4n + 7) = 1

=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )

Khách vãng lai đã xóa
le phuong anh
27 tháng 4 2020 lúc 14:44

Gọi ƯCLN(2n+3;4n+7) = d (d thuộc N*)

Ta có:\(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}}\)

    \(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\)

    \(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}\)

   \(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)

   \(\Rightarrow1⋮d\)

   \(\Rightarrow d=1\)

    \(\Rightarrow\frac{2n+3}{4n+7}\)là phân số tối giản với mọi n thuộc Z(ĐPCM)

Khách vãng lai đã xóa
Văn Thị Mỹ Hạnh
Xem chi tiết
Trần Thị Bưởi
21 tháng 2 2017 lúc 21:02

Vì 4n+3​​ phần 5n+4 là phân số tối giản

Gọi ưcln(4n+3;5n+4) là d