Với x thuộc n,chứng tỏ phân số sau là tối giản:3x+2/5x+3
Chứng tỏ rằng phân sau là phân số tối giản với mọi n thuộc N :n^3+2n/n^4+3n^2+1
chứng tỏ rằng phân số 8n +3 / 6n +2 là phân số tối giản với n thuộc N
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản
Chứng tỏ rằng phân số sau tối giản với mọi n thuộc N:5n+3/3n+2
gọi UCLN(5n+3; 3n+2)=d khi đó 5n+3 chia hết cho d suy ra 15n+9 chia hết cho d (1)
3n+2 chia hết cho d nên 15n + 10 cũng chia hết cho d (2) ( dử dụng tính chất a chia hết cho m thì a.n cũng chia hết cho m)
từ 1 và 2 suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d ( tính chất chia hết của 1 tổng- hiệu). vậy d=1
vậy UCLN(5n+3; 3n+2)=1 hay phân số trên tối giản
lưu ý: để chứng minh 1 phân số tối giản ta chứng minh UCLN của tử và mẫu bằng 1. còn trong tập Z ta cm UCLN = +-1
chứng tỏ rằng phân số 8n +3 / 6n +2 là phân số tối giản với n thuộc N
chứng tỏ rằng 3n+2 phần 5n+3 là phân số tối giản [với n thuộc n]
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Chứng tỏ các số sau là phân số tối giản với n thuộc Z :
a. 2n+1/4n+6
b.20n-3/15n-2
a) Gọi ƯC(2n+1,4n+6) = d ( d thuộc Z)
Suy ra 2n+1 chia hết cho d
4n+6 chia hết cho d
Suy ra 2(2n+1) chia hết cho d hay 4n+ 2 chia hết cho d
Suy ra 4n+ 6 - 4n - 2 chia hết cho d hay 4 chia hết cho d
Suy ra d thuộc {1;-1;2-2;4;-4}
Mà 2n + 1 không chia hết cho 2 và -2 nên d khác 2 và -2
4n+6 không chia hết cho 4 và -4 nên d khác 4 và -4
Suy ra d chỉ có thể là 1 và -1
Vậy 2n+1/4n+6 là phân số tối giản với mọi n
b)CÓ LẼ SAI ĐẦU BÀI
Chứng tỏ 2n+3/4n+7 là phân số tối giản với n thuộc Z
Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)
=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)
=> (4n+7)-(4n+6) chia hết cho d
=> 4n+7-4n-6 chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N
=> d=1 => ƯCLN (2n+3; 4n+7)=1
=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z
Gọi d là ƯC(2n + 3 ; 4n + 7)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)
=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d
=> 2 chia hết cho d
* d = 1 => 2n + 3 chia hết cho 1
* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2
=> d = 1
=> ƯCLN(2n + 3; 4n + 7) = 1
=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )
Gọi ƯCLN(2n+3;4n+7) = d (d thuộc N*)
Ta có:\(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\frac{2n+3}{4n+7}\)là phân số tối giản với mọi n thuộc Z(ĐPCM)
Chứng tỏ phân số 4n+3/5n+4 với n thuộc N là phân số tối giản
Vì 4n+3 phần 5n+4 là phân số tối giản
Gọi ưcln(4n+3;5n+4) là d