Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FREESHIP Asistant
Xem chi tiết
Thanh Hoàng Thanh
11 tháng 3 2022 lúc 8:44

\(1)\sqrt{x^2+1}< 3.\\ \Leftrightarrow x^2+1< 9.\\ \Leftrightarrow x^2< 8.\\ \Leftrightarrow\left[{}\begin{matrix}x< 2\sqrt{2}.\\x>-2\sqrt{2}.\end{matrix}\right.\)

\(\Leftrightarrow-2\sqrt{2}< x< 2\sqrt{2}.\)

\(2)\dfrac{x^2-4x+3}{x^2-4}< 0.\)

Đặt \(f\left(x\right)=\dfrac{x^2-4x+3}{x^2-4}.\)

\(x^2-4=0.\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=-2.\end{matrix}\right.\\ x^2-4x+3=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=1.\end{matrix}\right.\)

Bảng xét dấu:

undefined

\(\Rightarrow f\left(x\right)< 0\Leftrightarrow x\in\left(-2;1\right)\cup\left(2;3\right).\)

 

Akai Haruma
11 tháng 3 2022 lúc 8:28

Lời giải:

1.

$\sqrt{x^2+1}<3$

$\Leftrightarrow 0\leq x^2+1<9$

$\Leftrightarrow x^2+1<9$

$\Leftrightarrow x^2<8$

$\Leftrightarrow -2\sqrt{2}< x< 2\sqrt{2}$

2.

Xét 2 TH: 

TH1: \(\left\{\begin{matrix} x^2-4x+3<0\\ x^2-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)(x-3)<0\\ (x-2)(x+2)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 1< x< 3\\ x>2 \text{hoặc} x<-2\end{matrix}\right.\)

\(\Leftrightarrow 2< x<3\)

TH2: \(\left\{\begin{matrix} x^2-4x+3>0\\ x^2-4<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)(x-3)>0\\ (x-2)(x+2)<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>3 \text{hoặc} x<1\\ -2< x< 2\end{matrix}\right.\)

\(\Leftrightarrow -2< x< 1\)

Kết hợp 2 TH suy ra tập nghiệm \(S=(2;3)\cup (-2;1)\)

Phan Hoàng Quốc Khánh
Xem chi tiết
Nguyễn Ngọc Anh Minh
12 tháng 3 2019 lúc 9:50

Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)

Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)

=> Phương trình vô nghiệm

Xem chi tiết
Trần Quốc Lộc
14 tháng 1 2018 lúc 18:57

Bất phương trình bậc nhất một ẩn

Bất phương trình bậc nhất một ẩn

Thao Bui
Xem chi tiết
Thanh Hoàng Thanh
8 tháng 3 2022 lúc 10:59

\(\dfrac{x-2}{x+1}-\dfrac{3}{x+2}>0.\left(x\ne-1;-2\right).\\ \Leftrightarrow\dfrac{x^2-4-3x-3}{\left(x+1\right)\left(x+2\right)}>0.\\ \Leftrightarrow\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)    

Đặt \(f\left(x\right)=\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)

Ta có: \(x^2-3x-7=0.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{37}}{2}.\\x=\dfrac{3-\sqrt{37}}{2}.\end{matrix}\right.\)

          \(x+1=0.\Leftrightarrow x=-1.\\ x+2=0.\Leftrightarrow x=-2.\)

Bảng xét dấu:

undefined

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left(-\infty-2\right)\cup\left(\dfrac{3-\sqrt{37}}{2};-1\right)\cup\left(\dfrac{3+\sqrt{37}}{2};+\infty\right).\)

\(\sqrt{x^2-3x+2}\ge3.\\ \Leftrightarrow x^2-3x+2\ge9.\\ \Leftrightarrow x^2-3x-7\ge0.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{37}}{2}.\\x=\dfrac{3+\sqrt{37}}{2}.\end{matrix}\right.\)

Đặt \(f\left(x\right)=x^2-3x-7.\)

\(f\left(x\right)=x^2-3x-7.\)

\(\Rightarrow f\left(x\right)\ge0\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

\(\Rightarrow\sqrt{x^2-3x+2}\ge3\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

Nguyễn Đức Duy
Xem chi tiết
Xyz OLM
27 tháng 9 2023 lúc 20:43

ĐKXĐ \(3x^2-5x+1\ge0;x^2-2\ge0;x^2-x-1\ge0\)

Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3.\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\sqrt{3x^2-5x+1}-\sqrt{3\left(x^2-x-1\right)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\dfrac{3x^2-5x+1-3.\left(x^2-x-1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=0\left(∗\right)\end{matrix}\right.\)

Xét phương trình (*) ta có VT > 0 \(\forall x\) mà VP = 0

nên (*) vô nghiệm

Vậy x = 2 là nghiệm phương trình 

Võ Thị Kim Dung
Xem chi tiết
Mo Nguyễn Văn
17 tháng 9 2019 lúc 13:59

\(x=1\)

NBH Productions
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
31 tháng 12 2018 lúc 8:40

\(pt\Leftrightarrow\left(x-5\right)\left(4x^3+19x^2+79x+399\right)=0\)

Hiền Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2022 lúc 13:22

a: Đặt \(x^2-4=a\)

Pt sẽ là \(a=3\sqrt{xa}\)

\(\Rightarrow a^2=9xa\)

\(\Leftrightarrow a\left(a-9x\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)

hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)

d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)

Pt sẽ là 2a+b=ab+2

=>(b-2)(1-a)=0

=>b=2 và 1-a

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Nguyễn Huyền Trâm
Xem chi tiết
Đặng Thị Vân Anh
13 tháng 2 2020 lúc 20:06

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
31 tháng 7 2022 lúc 9:54

Bài 2: 

a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)

\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)

=>-9x=-12

hay x=4/3

b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)

=>x2+2x-x+2=2

=>x2+x=0

=>x=0(loại) hoặc x=-1(nhận)

c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)

=>4=4(luôn đúng)

Vậy: S={x|x<>2; x<>-2}