Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị My Na

giải phương trình :

\(x^4-3\text{x}^3+4\text{x}^2-3\text{x}+1=0\)

Kiyotaka Ayanokoji
8 tháng 6 2020 lúc 12:35

\(x^4-3x^3+4x^2-3x+1=0\)

Chia cả hai vế với \(x^2\)ta có

\(x^2-3x+4-\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-\left(3x+\frac{3}{x}\right)+4=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3.\left(x+\frac{1}{x}\right)+4=0\)

Đặt \(t=x+\frac{1}{x}\left(t>0\right)\)    \(\Rightarrow t^2-2=x^2+\frac{1}{x^2}\)

\(t^2-2-3t+4=0\)

\(\Leftrightarrow t^2-3t+2=0\)

\(\Leftrightarrow t^2-t-2t+2=0\)

\(\Leftrightarrow t.\left(t-1\right)-2.\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right).\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=1\left(TM\right)\\t=2\left(TM\right)\end{cases}}\)

TH1 \(t=1\)\(\Rightarrow x+\frac{1}{x}=1\)

\(\Leftrightarrow\frac{x^2+1}{x}=1\)\(\Leftrightarrow x^2+1=x\)

                                  \(\Leftrightarrow x^2-x+1=0\)

                                  \(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)

                                 \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)   (Vô nghiệm)

TH2 \(t=2\)  \(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow\frac{x^2+1}{x}=2\)   \(\Leftrightarrow x^2+1=2x\)

                                     \(\Leftrightarrow x^2-2x+1=0\)

                                     \(\Leftrightarrow\left(x-1\right)^2=0\)

                                     \(\Leftrightarrow x-1=0\)

                                    \(\Leftrightarrow x=1\)

Vậy \(x=1\)

                               

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Đức Duy
Xem chi tiết
anh kim
Xem chi tiết
Dung Vu
Xem chi tiết
Hacker Ngui
Xem chi tiết
Tran tuan an
Xem chi tiết
Nguyễn Thị My Na
Xem chi tiết
TranGiaBao
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
nguyên
Xem chi tiết