Viết phương trình elip biết:
a) E đi qua 2 điểm M(-2√3; 3/2) và N(2; 3√3/2)
b) E đi qua A(6; 0) và tỉ số giữa tiêu cự và trục lớn là 1/2
c) E có tiêu cự là 8 và đi qua M(√15; 1)
viết phương trình chính tắc của elip các trường hợp sau 1. elip đi qua điểm M(0;3) và có tiêu điểm F2(5;0) 2. Elip đi qua hai điểm A(7;0), B(0;3) 3. Elip đi qua hai điểm A(0;1), N(1; căn 3 / 2)
1: (E): x^2/a^2+y^2/b^2=1
Thay x=0 và y=3 vào (E), ta được:
3^2/b^2=1
=>b^2=9
=>b=3
F2(5;0)
=>c=5
=>\(\sqrt{a^2-9}=5\)
=>a^2-9=25
=>a^2=34
=>\(a=\sqrt{34}\)
=>x^2/34+y^2/9=1
2: Thay x=7 và y=0 vào (E), ta được:
7^2/a^2+0^2/b^2=0
=>a^2=49
=>a=7
Thay x=0 và y=3 vào (E), ta được:
0^2/a^2+3^2/b^2=1
=>b^2=9
=>b=3
=>(E): x^2/49+y^2/9=1
3: Thay x=0 và y=1 vào (E), ta được:
1/y^2=1
=>y=1
=>(E): x^2/a^2+y^2/1=1
Thay x=1 và y=căn 3/2 vào (E), ta được:
1^2/a^2+3/4=1
=>1/a^2=1/4
=>a^2=4
=>a=2
=>(E); x^2/4+y^2/1=1
Viết phương trình chính tắc của elip biết tiêu điểm F1 = (-√3;0) và đi qua M (√3 ; ½)?
F1(\(-\sqrt{3};0\)) => c=\(\sqrt{3}\)
có: \(b^2=a^2-c^2=a^2-3\)
pt elip di qua M:
\(\dfrac{3}{a^2}+\dfrac{1}{4b^2}=1\)
\(\Leftrightarrow\dfrac{3}{a^2}+\dfrac{1}{4a^2-12}=1\)
dat a^2=t (t>0)
\(\Leftrightarrow\dfrac{3}{t}+\dfrac{1}{4t-12}=1\\ \Leftrightarrow12t-36+t=4t^2-12t\)
\(\Leftrightarrow4t^2-25t+36=0\\ \Leftrightarrow\left[{}\begin{matrix}t=4\\t=\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a^2=4\\a^2=\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}b^2=1\\b^2=-\dfrac{3}{4}\left(loai\right)\end{matrix}\right.\)
=>ptelip: \(\dfrac{x^2}{4}+\dfrac{y^2}{1}=1\)
Cho elip (E) có phương trình x²/16 + y²/9 =1. Viết phương trình đường thẳng (d) đi qua M(1;2) và cắt (E) tại A, B sao cho M là trung điểm AB
Viết phương trình chính tắc Elip khi biết 1 tiêu điểm F2(5;0) và đi qua 1 điểm M(0;3)
F2(5;0)
=>c=5
(E): x^2/a^2+y^2/b^2=1
Thay x=0 và y=3 vào (E), ta được:
9/b^2=1
=>b=3
c^2=a^2-b^2
=>a^2=5^2+3^2=34
=>(E): x^2/34+y^2/9=1
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).
Phương trình chính tăc của (E) có dạng
\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)
\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)
Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)
Thay vào (1) ta được :
\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)
\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)
Suy ra \({a^2} = 4\)
Ta có a = 2 ; b = 1.
Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)
(0 ; -1) và (0 ; 1).
b) Phương trình chính tắc của (E) là :
\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).
Phương trình tung độ giao điểm của \(\Delta\) và \((E)\) là :
\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)
Suy ra tọa độ của C và D là :
\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)
Vậy CD = 1.
Viết phương trình chính tắc elip $\left( E \right)$ biết $\left( E \right)$ đi qua $M\left( 2\,;2\sqrt{6} \right)$ và $N\left( 4\,;-\sqrt{15} \right)$. Khi đó, tìm tọa độ các tiêu điểm cùa $\left( E \right)$ và tâm sai của $\left( E \right)$.
Gọi pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\). Do (E) đi qua \(\left(2;2\sqrt{6}\right)\) nên \(\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\). Đồng thời (E) đi qua \(N\left(4;-\sqrt{15}\right)\) nên \(\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\). Ta có hệ pt: \(\left\{{}\begin{matrix}\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\\\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\end{matrix}\right.\) . (I)
Đặt \(\dfrac{1}{a^2}=u\) và \(\dfrac{1}{b^2}=v\) \(\left(u,v>0\right)\). Khi đó hệ (I) trở thành \(\left\{{}\begin{matrix}4u+24v=1\\16u+15v=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{36}\\v=\dfrac{1}{27}\end{matrix}\right.\) (nhận) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a^2}=\dfrac{1}{36}\\\dfrac{1}{b^2}=\dfrac{1}{27}\end{matrix}\right.\)
Vậy pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{36}+\dfrac{y^2}{27}=1\)
Khi đó \(c=\sqrt{a^2-b^2}=\sqrt{36-27}=3\) nên tọa độ các tiêu điểm của *(E) là \(F_1\left(-3;0\right);F_2\left(3;0\right)\) . Tâm sai của (E) là \(e=\dfrac{c}{a}=\dfrac{3}{6}=\dfrac{1}{2}\)
Cho elip (E) đi qua điểm \(M\left(\dfrac{3}{\sqrt{5}};\dfrac{4}{\sqrt{5}}\right)\) và tam giác \(MF_1F_2\) vuông tại M ( \(F_1;F_2\) là hai tiêu điểm của elip)
a) Viết phương trình chính tắc của (E)
b) Tìm tiêu cự và tỉ số \(\dfrac{c}{a}\) của E
phương trình (E) có dạng:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)
Vì (E) đi qua điểm M nên
\(\dfrac{\dfrac{9}{5}}{a^2}+\dfrac{\dfrac{16}{5}}{b^2}=1\)
\(\dfrac{9}{a^2}+\dfrac{16}{b^2}=5\)(1)
Do tam giác \(MF_1F_2\)vuông tại M
Nên M thuộc đường tròn \(x^2+y^2=c^2\)
\(\dfrac{9}{5}+\dfrac{16}{5}=c^2\)
\(5=c^2\)
\(a^2-b^2=5\)
\(a^2=5+b^2\)
Thế vào pt(1)
\(9b^2+16a^2=5a^2b^2\)
\(9b^2+16\left(5+b^2\right)=5b^2\left(5+b^2\right)\)
\(5b^4-80=0\)
\(b^2=\pm4\)
\(\Rightarrow b^2=4\Rightarrow a^2=9\)
\(\left(E\right):\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
\(\Rightarrow c=\sqrt{5};e=\dfrac{\sqrt{5}}{2}\)
Lập phương trình chính tắc của elip trong trường hợp sau: Elip đi qua các điểm M(0; 3) và N(3; -12/5)
Gọi Elip cần tìm có dạng : (E) :
Vậy phương trình chính tắc của elip:
Cho một elip (E) : \(x^2+4y^2=16\)
a) Xác định tọa độ các tiêu điểm và các đỉnh của elip (E)
b) Viết phương trình đường thẳng \(\Delta\) đi qua điểm \(M\left(1;\dfrac{1}{2}\right)\) và có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;2\right)\)
c) Tìm tọa độ các giao điểm A và B của đường thẳng \(\Delta\) và elip (E). Chứng minh MA = MB