Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô nàng Xử Nữ
Xem chi tiết
Nguyễn Ngọc Thảo
18 tháng 3 2019 lúc 17:08

              \(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004\)

Ta có :=2/2.(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)

           =1/2.(2/1.3+2/3.5+2/5.7+...+2/n.(n+2)

           =1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2)

           =1/2.(1-1/n+2)

           =1/2.(n+2/n+2-1/n+2)

           =1/2.(n+2-1/n+2)

           =1/2.n+1/n+2

           =n+1/(n+2).2

       Vì: n+1/(n+2).2<2003/2004

Suy ra:n+1/(n+2).2=x/2004

Suy ra:(n+2).2=2004

            n+2     =1002

            n         =1000

Vậy n bằng 1000

Nguyễn Thị Thảo
Xem chi tiết
Nguyen Van Huong
29 tháng 3 2017 lúc 20:50

Sửa đề \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{n\left(n+2\right)}< \frac{2014}{2014}=1\)

Ta có :

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{n\left(n+2\right)}\)

\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\left(1-\frac{1}{n+2}\right)+\left[\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{n}\right)-\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{n}\right)\right]\)

\(=1-\frac{1}{n+2}+0\)

=\(=1-\frac{1}{n+2}\)

\(1-\frac{1}{n+2}< 1\) nên\(\frac{2}{1.3}+\frac{1}{3.5}+...+\frac{1}{n\left(n+2\right)}< 1\left(đpcm\right)\)

Cường Lucha
Xem chi tiết
Nguyễn Quang Duy
Xem chi tiết
Sergio Ramos
22 tháng 3 2017 lúc 20:41

2/1.3+2/3.5+2/5.7+...+2/n.(n+2)=1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2.                                                                                                    =1-1/n+2<2003/2004.                                                                                                                                                                        =>1/n+2>1-2003/2004=1/2004.                                                                                                                                                          =>n+2<2004.=>n<2002.                                                                                                                                                                     Vậy 1<n<2002.

Zlatan Ibrahimovic
22 tháng 3 2017 lúc 20:43

1<n<2002;nEN bạn nhé.

Đặng Anh Quế
Xem chi tiết
Kato Kid
Xem chi tiết
Trần Tiến Pro ✓
24 tháng 3 2019 lúc 21:45

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{n\left(n+2\right)}< \frac{2003}{2004}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{n}+\frac{1}{n+2}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{n+2}\right)\)

\(=\frac{1}{2}\left(\frac{n+2}{n+2}-\frac{1}{n+2}\right)\)

\(=\frac{1}{2}.\frac{n+1}{n+2}\)

\(=\frac{n+1}{2\left(n+2\right)}< \frac{2003}{2004}\)

\(\Leftrightarrow\hept{\begin{cases}n+1< 2003\\2\left(n+2\right)< 2004\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n< 2002\\\left(n+2\right)< 1002\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n< 2002\\n< 1000\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n+1=2002\\2\left(n+2\right)=1000\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n=2001\\n=498\end{cases}}\)

Trần Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2022 lúc 10:23

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Lương Bảo Tiên
1 tháng 1 2016 lúc 21:27

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\cdot\left(n+2\right)}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{n+2}>\frac{1}{2004}\)

\(\Rightarrow n+2<2004\)

\(\Rightarrow n=2002\)

Nguyễn Lương Bảo Tiên
1 tháng 1 2016 lúc 21:28

nhầm bước cuối

\(\Rightarrow n<2002\)

Doan Cuong
Xem chi tiết
Nguyễn thị khánh hòa
18 tháng 3 2017 lúc 21:56

Đặt A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

A=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

A = \(1-\frac{1}{n+2}\)

A= \(\frac{n+1}{n+2}\)=> Để A<2003/2004 thì \(\left(n+1\right).2004< \left(n+2\right).2003\)

\(\Leftrightarrow2004n+2004< 2003n+4006\)

\(\Leftrightarrow n< 2002\)

Phan Thị Tuyết Nga
18 tháng 3 2017 lúc 21:57

1/1-1/3+1/3-1/5+1/5-1/7+....+1/n-1/(n+2)

=1-1/(n+2)=(n+1)/(n+2)

Suy ra n =2001