Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Maoromata
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 6 2020 lúc 15:02

\(\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(cos^2\left(a-\frac{\pi}{4}\right)-sin^2\left(a-\frac{\pi}{4}\right)=cos\left(2a-\frac{\pi}{2}\right)\)

\(=cos\left(\frac{\pi}{2}-2a\right)=sin2a\)

Nguyễn Thị Bích Vân
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:33

\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)

\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)

\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)

Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:37

\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)

\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)

\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)

Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)

\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)

\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)

Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:45

Bài 2:

\(sin\frac{A+B}{2}=sin\left(\frac{180^0-C}{2}\right)=sin\left(90^0-\frac{C}{2}\right)=cos\frac{C}{2}\)

b/

\(A=cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)=cosx+2cos\left(x+\pi\right).cos\frac{\pi}{3}\)

\(=cosx-2cosx.\frac{1}{2}=0\)

c/

\(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}cos\frac{C}{2}=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)=4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

d/ \(\frac{cos2a}{1+sin2a}=\frac{cos^2a-sin^2a}{cos^2a+sin^2a+2sina.cosa}=\frac{\left(cosa-sina\right)\left(cosa+sina\right)}{\left(cosa+sina\right)^2}=\frac{cosa-sina}{cosa+sina}\)

e/

\(E=\frac{sina+cosa}{cos^3a}=\frac{1}{cos^2a}\left(tana+1\right)=\left(1+tan^2a\right)\left(tana+1\right)\)

\(E=tan^3a+tan^2a+tana+1\)

Lê Quang Thiên
Xem chi tiết
Le Hong Phuc
16 tháng 5 2020 lúc 9:47

--.--  \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ

Khách vãng lai đã xóa
Le Hong Phuc
16 tháng 5 2020 lúc 9:58

\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)

\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)

\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)

\(\cos2a=2\cos^2a-1=\frac{7}{25}\)

\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)

\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)

\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)

\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)

\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)

Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)

\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)

Khách vãng lai đã xóa
Thao Nhi Nguyen
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 13:47

\(\pi< a< \frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\) \(\Rightarrow sin2a=2sina.cosa>0\)

\(\Rightarrow sin2a=\sqrt{1-cos^22a}=\frac{3\sqrt{7}}{8}\)

\(cos2a=1-2sin^2a=\frac{1}{8}\)

\(\Leftrightarrow sin^2a=\frac{7}{16}\Rightarrow sina=-\frac{\sqrt{7}}{4}\)

\(\Rightarrow M=\frac{-\frac{\sqrt{7}}{4}-\frac{3\sqrt{7}}{8}}{-\frac{\sqrt{7}}{4}+\frac{3\sqrt{7}}{8}}=...\)

\(sinx\left(1-tan^2\frac{x}{2}\right)=sinx\left(1-\frac{sin^2\frac{x}{2}}{cos^2\frac{x}{2}}\right)=sinx\left(1-\frac{1-cosx}{1+cosx}\right)\)

\(=sinx\left(\frac{1+cosx-\left(1-cosx\right)}{1+cosx}\right)=\frac{2sinx.cosx}{1+cosx}\)

\(1-sin2x.sin3x-cos2x.cos3x=1-\left(cos3x.cos2x+sin3x.sin2x\right)=1-cos\left(3x-2x\right)=1-cosx\)

\(\Rightarrow\frac{1-sin2x.sin3x-cos2x.cos3x}{sinx\left(1-tan^2\frac{x}{2}\right)}=\frac{1-cosx}{\frac{2sinx.cosx}{1+cosx}}=\frac{\left(1-cosx\right)\left(1+cosx\right)}{2sinx.cosx}\)

\(=\frac{1-cos^2x}{2sinx.cosx}=\frac{sin^2x}{2sinx.cosx}=\frac{sinx}{2cosx}=\frac{1}{2}tanx\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 6 2020 lúc 22:30

\(\left\{{}\begin{matrix}\pi< a< 2\pi\\cosa>0\end{matrix}\right.\) \(\Rightarrow\frac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\Rightarrow sina=-\sqrt{1-cos^2a}=-\frac{\sqrt{5}}{3}\)

\(A=tan\left(a-3\pi\right)-tan2a=tana-tan2a\)

\(=\frac{sina}{cosa}-\frac{sin2a}{cos2a}=\frac{sina}{cosa}-\frac{2sina.cosa}{2cos^2a-1}\) (thay số và bấm máy)

1512 reborn
Xem chi tiết
Mysterious Person
5 tháng 5 2018 lúc 20:46

phần chứng minh biểu thức không phụ thuộc \(x\)

ta có : \(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{cos^2a}{cot^2a}\)

\(=\dfrac{cot^2a-cos^2a+cos^2a}{cot^2a}=\dfrac{cot^2a}{cot^2a}=1\left(đpcm\right)\)

ý còn lại : xem lại đề nha bn

phần chứng minh đẳng thức

ta có : \(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=\dfrac{2sinacosa-2sina}{2sinacosa+2sina}+tan^2\dfrac{a}{2}\)

\(=\dfrac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}+tan^2\dfrac{a}{2}=\dfrac{cosa-1}{cosa+1}+tan^2\dfrac{a}{2}\)

\(=\dfrac{1-2sin^2\dfrac{a}{2}-1}{2cos^2\dfrac{a}{2}-1+1}+tan^2\dfrac{a}{2}=\dfrac{-2sin^2\dfrac{a}{2}}{2cos^2\dfrac{a}{2}}+tan^2\dfrac{a}{2}\)

\(=-tan^2\dfrac{a}{2}+tan^2\dfrac{a}{2}=0\left(đpcm\right)\)

ta có : \(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}\)

\(=\dfrac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\dfrac{2cosa+2}{sina\left(cosa+1\right)}\)

\(=\dfrac{2\left(cosa+1\right)}{sina\left(cosa+1\right)}=\dfrac{2}{sina}\left(đpcm\right)\)

còn 2 câu kia để chừng nào rảnh mk giải cho nha

Mysterious Person
11 tháng 5 2018 lúc 17:51

mk lm 2 câu còn lại nha

ta có : \(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=\dfrac{\left(1-cos^2x\right)\left(tan^2x-1\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=\dfrac{tan^2x-sin^2x-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\dfrac{sin^4x}{cos^2x}-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2-1\right)}\)

\(=\dfrac{tan^2x\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\left(tan^2x-1\right)\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=sinx+cosx\left(đpcm\right)\)

ta có : \(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-\dfrac{sin^2a.cos^2b}{cos^2a.sin^2b}}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{\dfrac{cos^2a.sin^2b-sin^2a.cos^2b}{cos^2a.sin^2b}}=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(sin^2a.cos^2b-cos^2a.sin^2b\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(\left(sina.cosb-cosa.sinb\right)\left(sina.cosb+cosa.sinb\right)\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-sin\left(a-b\right)sin\left(a+b\right)}=-cos^2a.sin^2b\left(đpcm\right)\)

mk lm hơi tắc ! do tối rồi , mà mk lại đang ở quán nek nên không tiện làm dài . bạn thông cảm

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 6 2020 lúc 22:08

\(\frac{\pi}{2}< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)

\(A=cosa.cos\frac{4\pi}{3}+sina.sin\frac{4\pi}{3}=-\frac{\sqrt{3}}{2}.\left(-\frac{1}{2}\right)+\frac{1}{2}.\left(-\frac{\sqrt{3}}{2}\right)=0\)

\(B=cos\left(2a+2019.2\pi\right)=cos2a=1-2sin^2a=1-2\left(\frac{1}{2}\right)^2=\frac{1}{2}\)

xữ nữ của tôi
Xem chi tiết
Nguyễn Bích Ngọc
6 tháng 10 2017 lúc 22:03

2) Giải :

A = \(\dfrac{2\times\dfrac{\sin x}{\sin x}+3\times\dfrac{\cos x}{\sin x}}{5\times\dfrac{\cos x}{\sin x}+6\times\dfrac{\sin x}{\sin x}}=\dfrac{2+3\cot x}{5\cot x-6}=\dfrac{2+3\times2}{5\times2-6}=2\)

Nguyễn Bích Ngọc
6 tháng 10 2017 lúc 22:16

1) \(\sin^2x+\cos^2x=1\Rightarrow\cos x=1-\sin^2x=1-\left(\dfrac{2}{3}\right)^2=\dfrac{5}{9}\)

P = ( 1-3cos2a)(2+3cos2a)

= 2 + 3cos2a - 6cos2a - 9\(cos^22a\)

Thay cos = 5/9 vào pt rồi giải bpt là được

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2020 lúc 0:15

\(\frac{\pi}{2}< a< \pi\Rightarrow\pi< 2a< 2\pi\)

\(tan2a< 0\) \(\Rightarrow\frac{3\pi}{2}< 2a< 2\pi\Rightarrow cos2a>0\)

\(\Rightarrow cos2a=\frac{1}{\sqrt{1+tan^22a}}=\frac{3}{5}\)

\(tan\left(2a+\frac{\pi}{4}\right)=\frac{tan2a+tan\frac{\pi}{4}}{1-tan2a.tan\frac{\pi}{4}}=\frac{-\frac{4}{3}+1}{1+\frac{4}{3}}=...\)