Tìm nghiệm đa thức M(x) = 2x^2-10x
N(x) = X^2-9
A(x)=x mũ 4 + 5x mũ 3 -6x + 2x mũ 2 + 10x - 5x mũ 3 +1
B(x)= x mũ 4 -2x mũ 3+2x mũ 2 + 6x mũ 3 +1
a,thu gọn hai đa thức trên và tính : M(x)= A(x) - B (x)
b, tìm nghiệm của đa thức M(x)
Cho 2 đa thức : P(x) = 3x^3 - 2x + 7 + x^2 + 7x + 8 và Q(x) = 2x^2 - 3x^3 + 4 - 3x^2 - 9
a , sắp xếp 2 đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến và chỉ rõ bậc , hệ số cao nhất hệ số tự do của mỗi đa thức
b , Tìm M(x) = P(x) + Q(x) và N(x) = P(x) - Q(x)
c , tìm nghiệm của đa thúc M(x) , chứng tỏ nghiệm đó k phải là nghiệm của đa thức N ( x)
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8
Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5
ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm
Xét M(x)=0 suy ra...........
N(x)=5x+3
Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Câu 1 : Tìm nghiệm của đa thức f(x)= x^2+2x-3
Câu 2 : Chứng minh đa thức q(x)=x^2-10x+29 không có nghiệm !
Giúp mk với !
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
3 k nha bạn tốt quá mình đag cần gấp :)
Tìm nghiệm của các đa thức sau:
1)F(x)= 9x mũ 2+8-x1
2) G(x)= x mũ 2-10x+9
3)H(x)= |2x-3|-5
4)M(x)= |5x mũ 2-10|
Cám ơn
bài 8 .a,Tìm a để đa thức A(x)=2x\(^2\) -\(7x^2+10x+a\) chia hết co đa thức B(x)=x-2
b,Tìm m để đa thức A(x)=2x\(^3\)-x+m chia hết cho đa thức B(x)=2x+1
a: =>2x^3-4x^2-3x^2+6x+4x-8+a+8 chia hết cho x-2
=>a+8=0
=>a=-8
b: =>2x^3+x^2-x^2-0,5x-0,5x+0,25+m-0,25 chia hết cho 2x+1
=>m-0,25=0
=>m=0,25
Cho các đa thức M(x)=-2x^3+4x+x^2-3 và N(x)= 2x^3+x2-5-4x 1) Tính P(x) = M(x) + N(x) 2) Tìm nghiệm của đa thức P(x) 3) Tìm đa thức Q(x) biết Q(x) + N(x) = M(x)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
tìm nghiệm của các đa thức sau:
a.(2x-3)+(x+9)
b.10x-2x2
c.2x2-5x-7
\(a.\left(2x-3\right)+\left(x+9\right)=0\)
\(3x+6=0\Rightarrow x=-2\)
\(b.10x-2x^2=0\)
\(\Rightarrow10x=2x^2\Rightarrow x=5\)
\(c.2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(2x-7\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}2x-7=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3,5\\x=-1\end{cases}}\)
a, Ta có : \(2x-3+x+9=0\Leftrightarrow3x+6=0\Leftrightarrow x=-2\)
b, \(-2x^2+10x=0\Leftrightarrow-2x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)
c, \(2x^2-7x+2x-7=0\Leftrightarrow\left(x+1\right)\left(2x-7\right)=0\Leftrightarrow x=-1;x=\frac{7}{2}\)
nonohihahahahhahhahano
M(x) = 3x^3 - 3x + x^2 + 5 . N (x) = 2x^2 - x + 3x^3 + 9 . a, Tính M(x) + N (x) . b, Biết M(x) + N(x) - P(x) = 6x^3 + 3x^2 + 2x . Hãy tính P(x) . c, Tìm nghiệm của đa thức P(x)
a. M(x) + N(x) = 3x3 - 3x + x2 + 5 + 2x2 - x + 3x3 + 9
= (3x3 + 3x3) + ( x2 + 2x2 ) + ( -3x - x ) + (5 + 9)
= 6x3 + 3x2 - 4x + 14
b. M(x) + N(x) - P(x) = 6x3 + 3x2 + 2x
=> 6x3 + 3x2 - 4x + 14 - P(x) = 6x3 + 3x2 + 2x
=> 6x3 + 3x2 - 4x + 14 - ( 6x3 + 3x2 + 2x) = P(x)
=> 6x3 + 3x2 - 4x + 14 - 6x3 - 3x2 - 2x = P(x)
=> (6x3 - 6x3 ) + (3x2 - 3x2 ) + (-4x - 2x ) + 14 = P(x)
=> -6x + 14 = P(x)
Ta có : -6x + 14 = 0
=> -6x = -14
=> x = 7/3
=> Đa thức P(x) = -6x + 14 có nghiệm là 7/3
=>
Cho các đa thức:
M(x)=3x3-3x+x2+5
N(x)=2x2-x+3x3+9
a. Tính M(x) + N (x)
b. Biết M(x) +N(x) - P(x) = 6x3+3x2+2x. Hãy tính P(x)
c. Tìm nghiệm của đa thức P(x)
d. Chứng tỏ rằng đa thức x2+4x+5 không có nghiệm
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.