Giải phương trình
\(\int^{x+\frac{1}{y}+\frac{x}{y}=2}_{x^2+\frac{1}{y^2}+\frac{x}{y}=\frac{7}{4}}\)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{x+1}{x-1}+\frac{3y}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{cases}}\)
\(\hept{\begin{cases}\frac{x+1}{x-1}+\frac{3y}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{cases}}\)
giải hệ phương trình
a)\(\int^{\frac{x}{y}-\frac{x}{y+12}=1}_{\frac{x}{y-12}-\frac{x}{y}=2}\)
b)\(\int^{4\left(x+y\right)=5\left(x-y\right)}_{\frac{40}{x+y}+\frac{40}{x-y}=9}\)
Giải các hpt
trừ 2 về đi bạn , cả 2 câu đều k khó đâu
a)x=144 , y=36
b)x=9 , y=1
cần lời giải thì nói mình
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+x+y=4xy\\\frac{1}{x}+\frac{1}{y}+\frac{y}{x^2}+\frac{x}{y^2}=4\end{cases}}\)
Giải các hệ phương trình:
a) \(\hept{\begin{cases}x-y+2xy=5\\x^2+y^2+xy=7\end{cases}}\)
b) \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{cases}}\)
a) \(\hept{\begin{cases}\left(x-y\right)^2=\left(5-2xy\right)^2\\\left(x+y\right)^2-2xy+xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-4xy=25+4x^2y^2-20xy\\\left(x+y\right)^2-xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=25+4x^2y^2-16xy\\\left(x+y\right)^2=7+xy\end{cases}}\)
\(\Rightarrow25+4x^2y^2-16xy=7+xy\)
\(\Leftrightarrow4x^2y^2-17xy+18=0\)
\(\Leftrightarrow xy=\frac{9}{4}\) hoặc \(xy=2\)
Từ đó tính đc x+y dễ dàng tìm được các giá trị x và y
b) Câu hỏi của Huỳnh Minh Nghĩa - Toán lớp 9 - Học toán với OnlineMath
giải hệt phương trình \(\int^{2x+\frac{1}{y}=\frac{3}{x}}_{2y+\frac{1}{x}=\frac{3}{y}}\)
giải hệ phương trình sau
\(\hept{\begin{cases}x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{51}{4}\\x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{774}{16}\end{cases}}\)
Phương trình nào sau đây là phương trình chính tắc của đường elip?
A. \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{9} = 1\)
B. \(\frac{{{x^2}}}{1} + \frac{{{y^2}}}{6} = 1\)
C. \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
D. \(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = 1\)