Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ văn tùng
Xem chi tiết
Lê Thành An
Xem chi tiết
Vua Phá Lưới
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2020 lúc 13:22

\(a+b=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2=\frac{1}{4}\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b-4\right)\le0\)

\(\Rightarrow0\le a+b\le4\)

\(\Rightarrow P_{min}=0\) khi \(a=b=0\)

\(P_{max}=505.4=2020\) khi \(a=b=2\)

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

nghiemminhphuong
Xem chi tiết
Nguyễn Linh Chi
10 tháng 6 2020 lúc 20:58

Ta có: \(a^2-ab+b^2=a+b\)

<=> \(a^2-a\left(b+1\right)+b^2-b=0\)

<=> \(a^2-2a.\frac{b+1}{2}+\left(\frac{b+1}{2}\right)^2-\frac{b^2}{4}-\frac{b}{2}-\frac{1}{4}+b^2-b=0\)

<=> \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=1\)

Ta có: \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=\frac{\left(a-\frac{b+1}{2}\right)^2}{1}+\frac{\left(\frac{3}{2}b-\frac{3}{2}\right)^2}{3}\)

\(\ge\frac{\left(a+b-2\right)^2}{4}\)

=> \(1\ge\frac{\left(a+b-2\right)^2}{4}\)

<=> \(\left(a+b-2\right)^2\le4\)

<=> \(-2\le a+b-2\le2\)

<=> \(0\le a+b\le4\)

mà  \(P=505a+505b=505\left(a+b\right)\)

=> \(0\le P\le2020\)

Dấu "=" xảy ra <=> \(\frac{a-\frac{b+1}{2}}{1}=\frac{\frac{3}{2}b-\frac{3}{2}}{3}\)<=> a = b 

Nếu P = 0 khi đó: a + b = 0 <=> a = b = 0 

Nếu P = 2020 <=>  a + b = 4 <=> a = b = 2

Vậy: GTNN của P = 0 đạt tại a = b = 0 

GTLN của P= 2020 đạt tại a = b = 2

Khách vãng lai đã xóa
nghiemminhphuong
4 tháng 7 2020 lúc 21:20

\(a^2-ab+b^2=a+b\Rightarrow\left(a-b\right)^2=a+b-ab\)

\(\left(a-b\right)^2\ge0\Rightarrow\left(a+b\right)\ge ab\Rightarrow2\left(a+b\right)\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a+b\right)+a^2+b^2=2\left(a+b\right)+a+b+ab\le4\left(a+b\right)\)

\(\Leftrightarrow0\le a+b\le4\Leftrightarrow0\le P\le2020\)\(D=xr\Leftrightarrow\orbr{\begin{cases}a=b=0\\a=b=2\end{cases}}\)

Khách vãng lai đã xóa
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:04

Chắc chắn đây không phải là 1 đề bài chính xác

missing you =
Xem chi tiết
trương khoa
23 tháng 5 2021 lúc 11:33

,

Nguyễn Việt Lâm
23 tháng 5 2021 lúc 11:54

Ngắn gọn thì đây là 1 bài toán không giải được (min max tồn tại, nhưng không thể tìm được)

Cực trị xảy ra tại \(x=\dfrac{a}{b}\) là nghiệm của pt bậc 4:

\(7x^4+11x^3-3x^2-4x-2=0\)

Là một pt không thể phân tích về các pt bậc thấp hơn

Nguyễn Việt Lâm
23 tháng 5 2021 lúc 12:12

Nếu sửa đề thế này thì có thể quy về 1 biến khá đơn giản:

\(3-ab=a^2+b^2\ge2ab\Rightarrow ab\le1\)

\(3-ab=a^2+b^2\ge-2ab\Rightarrow ab\ge-3\)

\(\Rightarrow-3\le ab\le1\)

\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)

Đặt \(ab=x\Rightarrow-3\le x\le1\)

\(P=-x^2-7x+9=\left(-x^2-7x+8\right)+1=1+\left(1-x\right)\left(x+8\right)\ge1\)

\(P=\left(-x^2-7x-12\right)+21=21-\left(x+3\right)\left(x+4\right)\le21\)

Tống Cao Sơn
Xem chi tiết
Nguyễn Văn A
31 tháng 3 2023 lúc 21:54

Đề có lẽ là "Tìm maxP" chứ nhỉ?

Vì a,b là các số thực dương nên:

\(P=\dfrac{ab}{a^2+2b^2}=\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{a}}\)

Ta có \(2b\ge ab+4\Rightarrow\dfrac{2b}{a}\ge b+\dfrac{4}{a}\)

Áp dụng BĐT Cauchy ta có \(b+\dfrac{4}{a}\ge4\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\dfrac{2b}{a}\ge4\sqrt{\dfrac{b}{a}}\Leftrightarrow\left(\dfrac{b}{a}-2\sqrt{\dfrac{b}{a}}+1\right)\ge1\)

\(\Leftrightarrow\left(\sqrt{\dfrac{b}{a}}-1\right)^2\ge1\Leftrightarrow\sqrt{\dfrac{b}{a}}-1\ge1\Leftrightarrow\dfrac{b}{a}\ge4\).

Đặt \(x=\dfrac{b}{a}\Rightarrow x\ge4\). Ta có: \(\dfrac{1}{P}=2x+\dfrac{1}{x}=\left(\dfrac{x}{16}+\dfrac{1}{x}\right)+\dfrac{31x}{16}\ge2\sqrt{\dfrac{x}{16}.\dfrac{1}{x}}+\dfrac{15.4}{16}=\dfrac{33}{4}\)

\(\Leftrightarrow P\le\dfrac{4}{33}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{b}{a}=4\\2b=ab+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\)

Vậy \(MaxP=\dfrac{4}{33}\).

 

Chuyengia247
Xem chi tiết
Đại Tiểu Thư
2 tháng 2 2022 lúc 17:36

Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )

Trần Đức Huy
2 tháng 2 2022 lúc 17:48

Ta có: \(\left(a+b+c\right)^2\ge0\)

     <=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

     <=>\(1+2\left(ab+bc+ca\right)\ge0\)

     <=>\(ab+bc+ca\ge\dfrac{-1}{2}\)

     hay P\(\ge\dfrac{-1}{2}\)