Cho điểm M(x;y) di động với \(\left\{{}\begin{matrix}x=2sint+2\\y=2cost+1\end{matrix}\right.\) , t là số thực tùy ý. Tìm quỹ tích điểm M khi t thay đổi
Cho điểm M( x ; y) có :
x = - 1 + 2 cos t y = 2 - 2 sin t ( t ∈ ℝ )
Tập hợp điểm M là:
A. Đường tròn tâm I( 1 ; -2) , bán kính R= 2.
B. Đường tròn tâm I( -1 ;2) , bán kính R= 2.
C. Đường tròn tâm I( -1 ; 2), bán kính R= 4.
D. Đường tròn tâm I( 1; -2) , bán kính R= 4.
Đáp án B
Ta có:
=> ( x +1) 2+ (y- 2) 2= 4cos2t + 4sin2t
=> ( x +1) 2+ (y- 2) 2 = 4
Vậy tập hợp điểm M là phương trình đường tròn có tâm I( -1;2) , bán kính R= 2.
Lời giải:
PT hoành độ giao điểm:
\(x^3-2(m+1)x^2+(5m+1)x-2m-2=0\)
\(\Leftrightarrow (x-2)(x^2-2mx+m+1)=0\)
Vì \(A(2,0)\) nên hoành độ hai điểm \(B,C\) sẽ là nghiệm của PT \(x^2-2mx+m+1=0\)
Điều kiện: \(\Delta'=m^2-(m+1)>0\)
Khi đó, áp dụng định lý Viete, nếu $x_1,x_2$ là hai nghiệm của PT thì \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+1\end{matrix}\right.\)
Nhận thấy hai điểm $B,C$ nằm trên $Ox$ mà một điểm nằm trong đường tròn \(x^2+y^2=1\) nên \((x_1-1)(x_2-1)<0\)
\(\Leftrightarrow x_1x_2-(x_1+x_2)+1<0\Leftrightarrow m+1-2m+1<0\)
\(\Leftrightarrow m>2\). Thử lại ta thấy thỏa mãn điều kiện \(\Delta'\)
Vậy \(m>2\)
Cho 42 đường thẳng và điểm M.
Gọi x, y lần lượt là số đường thẳng đã cho đi qua điểm M và không đi qua điểm M.
Tìm x và y biết rằng x=5y
** Giúp mình với nha các cậu **
Ta có :
x = 5y => \(\frac{x}{5}=y\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{42}{6}=7\)
Suy ra :
+) \(\frac{x}{5}=7\Leftrightarrow x=35\)
+) \(y=7\)
Vậy x = 35 ; y = 7
Cho \(\left(P\right):y=x^2\) và (d):\(y=2.\left(m-1\right)x+m^2+2m\). Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Gọi \(A\left(x_1;x_1^2\right)\) và \(B\left(x_2;x_2^2\right)\) là 2 điểm thuộc (P) và đối xứng qua M
Do A; B đối xứng qua M
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2.\left(-1\right)\\x_1^2+x_2^2=2.5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=-2-x_1\\x_1^2+x_2^2=10\end{matrix}\right.\)
\(\Rightarrow x_1^2+\left(-2-x_1\right)^2=10\)
\(\Rightarrow2x_1^2+4x_1-6=0\Rightarrow\left[{}\begin{matrix}x_1=1\\x_1=-3\end{matrix}\right.\)
Vậy 2 điểm đó là \(\left(1;1\right)\) và \(\left(-3;9\right)\)
Cho điểm M(1;4;2) và mặt phẳng ( α ) : x + y + x - 1 = 0 . Tìm khoảng cách từ điểm M đến mặt phẳng (α).
A. 2 3
B. 2
C. 3 2
D. 3 3
Bài 1: Cho y=(4m+3)x-m+3 (d)
y=(4m-1)x+3m-1 (d1)
a,Tìm m để (d) cắt (d1) tại 1 điểm trên trục tung
b,Tìm m để (d) cắt (d1) tại 1 điểm trên trục hoành
c,Tìm m để (d) và (d1) cắt nhau tại 1 điểm Bài 2: Cho y=(m-1)x+2m-5 (d2) (m khác 1)
a,Tìm m để phương trình đường thẳng (d2) song song với đường thẳng (d3) y=3x+1
b,Tìm m để phương trình đường thẳng (d2) đi qua M(2;1)
c,Vẽ đồ thị của đường thẳng (d2) với giá trị của m tìm được ở câu b. Tính góc tạo bởi đường thẳng vẽ được với trục hoành
Cho phương trình : x^3 - (m+1) x^2 - (2m^2-3m+2)x + 2m (2m-1) =0. Tìm m để đồ thị giao với trục Ox tại 3 điểm, 2 điểm, 1 điểm.
Cho hàm số y=\(\dfrac{x^2-2x+9}{x-2}\) (C). Tìm m để y=m(x-5)+10 cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho M(5;10) là trung điểm AB
Lời giải:
PT hoành độ giao điểm:
\(x^2(m-1)+x(12-7m)+(10m-29)=0(1)\)
Để hai đồ thị hàm số cắt nhau tại hai điểm phân biệt thì PT $(1)$ phải có hai nghiệm phân biệt \(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ \Delta=(12-7m)^2-4(m-1)(10m-29)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ 9m^2-12m+28=(3m-2)^2+24>0\end{matrix}\right.\Leftrightarrow m\neq 1\)
Khi đó , áp dụng định lý Viete, nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì: \(x_1+x_2=\frac{7m-12}{m-1}\)
Hai giao điểm của hai ĐTHS là \(A(x_1,m(x_1-5)+10);B(x_2,m(x_2-5)+10)\)
\(M(5,10)\) là trung điểm của $AB$
\(\Leftrightarrow \left\{\begin{matrix} \frac{x_1+x_2}{2}=5\\ \frac{y_1+y_2}{2}=\frac{m(x_1+x_2)-10m+20}{2}=10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{7m-12}{m-1}=10\\ \frac{m(7m-12)}{m-1}=10m\end{matrix}\right.\)
Suy ra \(m=\frac{-2}{3}\) (thỏa mãn)
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\). Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Cho tam giác ABC, trung tuyến BD và CE. Gọi M là điểm đ/x của B qua D, N là điểm đ/x của C qua E. Chứng minh : M là điểm đ/x của N qua điểm A.