Bài 1 : cho parabol (p) y= x^2 và đường thẳng d : y= mx-m+1
tìm m sao cho (p) vad ( d) cắt tại 2 điểm phân biệt nằm ở 2 phía trục tung .
Cho parabol (P): y = 𝑥^2 và đường thẳng (d): y = mx − m + 1. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt nằm ở hai phía trục tung.
Pt hoành độ giao điểm:
\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)
d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)
\(\Leftrightarrow m< 1\)
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
Cho Parabol (P): y=x2 và đường thẳng (d): y=(m-1)x+m+4. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt nằm về 2 phía của trục tung
Xét phương trình hoành độ giao điểm
\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)
để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu
khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)
- Xét pt hoành độ gd....:
x2-(m-1)x-m-4=0 (1)
- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau
- \(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)
Vậy với m>-4 thì ....
Cho parabol (P): y = x2 và đường thẳng (d): y = (2m+1)x - m2 - m. Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho A, B nằm ở hai phía trục tung.
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung thì m^2+m<0
=>-1<m<0
Cho parabol (P): y = x^2 và đường thẳng (d): y = mx + m + 3. Tìm m để đường thẳng
(d) cắt parabol (P) tại hai điểm phân biệt ở bên phải trục tung.
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2=mx+m+3\)
\(\Leftrightarrow x^2-mx-m-3=0\) (I)
Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung
\(\Leftrightarrow\) Pt (I) có hai nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)
Vậy...
cho parabol (p):y=x2 và đường thẳng (d):y=mx+m+3. Tìm m để đường thẳng (d) cắt parabol (p) tại 2 điểm phân biệt ở bên phải trục tung
Cho parabol (P) y = mx^2 và đường thẳng (d) y = -3x + 5
a) Tìm m để (P) đi qua A ( -1; 2). Hãy vẽ (P) với m vừa tìm được
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt nằm khác phía của trục tung
Cho Parabol :y=x2 và đường thẳng d :y=mx+2
1)Tìm điểm cố định của đường thẳng (d)
2)Chứng minh rằng đường thẳng d và parabol luôn cắt nhau tại hai điểm phân biệt A và B nằm khác phía trục tung
1: Điểm cố định của (d) là:
x=0 và y=m*0+2=2
2: PTHĐGĐ là:
x2-mx-2=0
a=1; b=-m; c=-2
Vì a*c<0
nên (P) luôn cắt (d) tại hai điểm khác phía so với trục tung
1) cho hàm số y=2x+b. Tìm b để hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
2) Cho Parabol (P): y=x2 và đường thẳng d: y=(m-1)x+m-4. Tìm m để d cắt (P) tại 2 điểm phân biệt nằm về 2 phía của trục tung.
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)