Cho tam giác nhọn ABC,các đường cao AD,BE,CF cắt nhau tại H .Chứng minh :
a, tam giác AEF~tam giác ABC
b, chứng minh DC.DN=DK.DB
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H chứng minh:
A, tam giác ABE vuông góc với tâm giác ACF
B, AEF = ABC
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a. chứng minh tam giác AEB đồng dạng với tam giác AFC
b. chứng minh góc AEF bằng góc ABC
c. cho AE= 3cm; AB= 6cm. Chứng minh diện tích tam giác ABC = diện tích tam giác AEF
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB∼ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
Cho tam giác nhọn ABC Các đường cao AD, BE, CF cắt nhau tại H chứng minh rằng: a) Tâm giáo AEF đồng dạng với tam giác ABC b) BH.BE + CH.CF = BC^2 c) AD.HD
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Cho tam giác ABC nhọn có 3 góc nhọn , các đường cao AD ; BE ; CF cắt nhau tại H . Chứng minh :
a. AE.AC = AF.AB
b.tam giác AEF đd tam giác ABC ; tam giác DBF đd tam giác DEC
c. tam giác HEF đd tam giác HBC
d.chứng minh:BF.BA+CE.CA=BC^2
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)
b)
Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
d) Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
\(\widehat{FBD}\) chung
Do đó: ΔBFC\(\sim\)ΔBDA(g-g)
Suy ra: \(\dfrac{BF}{BD}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BF\cdot BA=BD\cdot BC\)
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
\(\widehat{BCE}\) chung
Do đó: ΔBEC\(\sim\)ΔADC(g-g)
Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CE\cdot CA=CB\cdot CD\)
Ta có: \(BF\cdot BA+CE\cdot CA\)
\(=BC\cdot BD+BC\cdot CD\)
\(=BC\left(BD+CD\right)\)
\(=BC\cdot BC=BC^2\)(Đpcm)
cho tam giác ABC nhọn,các đường cao AD,BE,CF cắt nhau tại H.
a) chứng minh tam giác EAB đồng dạng tam giác FAC
b) chứng minh góc AEF bằng góc ABC
c)chứng minh AF/FB*BD/CD*CE/EA=1
Hướng dẫn làm:
(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ
Đúng nha nguyễn ngọc khánh vy
(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ
Mình đúng nha nguyễn ngọc khánh vy
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. Chứng minh a) BDHF nội tiếp b) BFEC nội tiếp c) HA.HD=HB.HE=HF.HC d) tam giác AEF đồng dạng tam giác ABC e) H là tâm đường tròn ngoại tiếp tam giác EFD
a: Xét tứ giác BDHF có
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có
góc AHF=góc CHD
=>ΔHAF đồng đạng với ΔHCD
=>HA/HC=HF/HD
=>HA*HD=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HA*HD
d: Xét ΔAEF và ΔABC có
góc AEF=góc ABC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tam giác AEB đồng dạng tam giác AFC
b) Chứng minh tam giác AEF đồng dạng tam giác ABC
c) Cho thêm điều kiện 4AD.HD= BC2. Chứng minh tam giác ABC là tam giác cân
a: Xet ΔAEB và ΔAFC có
góc AEB=góc AFC
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC co
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Cho AE=3 cm, AB=6 cm
Chứng minh: Diện tích tam giác ABC= 4*Diện tích tam giác AEF