Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Linh
Xem chi tiết
Nguyễn Đức Tố Trân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2022 lúc 8:16

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

Đinh Thị Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 23:20

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

pro
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2021 lúc 21:35

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Duylong
22 tháng 4 2021 lúc 20:44
Câu b xét 2triangs đồng dạng
Khách vãng lai đã xóa
Jojoi Emu
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:35

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:36

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:41

d) Xét ΔBFC vuông tại F và ΔBDA vuông tại D có 

\(\widehat{FBD}\) chung

Do đó: ΔBFC\(\sim\)ΔBDA(g-g)

Suy ra: \(\dfrac{BF}{BD}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BF\cdot BA=BD\cdot BC\)

Xét ΔBEC vuông tại E và ΔADC vuông tại D có 

\(\widehat{BCE}\) chung

Do đó: ΔBEC\(\sim\)ΔADC(g-g)

Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CE\cdot CA=CB\cdot CD\)

Ta có: \(BF\cdot BA+CE\cdot CA\)

\(=BC\cdot BD+BC\cdot CD\)

\(=BC\left(BD+CD\right)\)

\(=BC\cdot BC=BC^2\)(Đpcm)

nguyễn ngọc khánh vy
Xem chi tiết
Hội TDTH_Musa
17 tháng 4 2016 lúc 17:24

 Hướng dẫn làm:
(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Đúng nha nguyễn ngọc khánh vy

Võ Đông Anh Tuấn
17 tháng 4 2016 lúc 17:29

(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Mình đúng nha nguyễn ngọc khánh vy

nguyễn ngọc khánh vy
17 tháng 4 2016 lúc 17:34

sao chứng minh nó bằng 1 đc b

gia hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2023 lúc 13:49

a: Xét tứ giác BDHF có

góc BDH+góc BFH=180 độ

=>BDHF là tứ giác nội tiếp

b: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có

góc AHF=góc CHD

=>ΔHAF đồng đạng với ΔHCD

=>HA/HC=HF/HD

=>HA*HD=HF*HC

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng vơi ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HB*HE=HA*HD

d: Xét ΔAEF và ΔABC có

góc AEF=góc ABC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 22:34

a: Xet ΔAEB và ΔAFC có

góc AEB=góc AFC

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

b: Xét ΔAEF và ΔABC co

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

Phú Phan Đào Ngọc
Xem chi tiết