Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Đặng Bảo Trâm
Xem chi tiết
~Tiểu Hoa Hoa~
Xem chi tiết
Nobi Nobita
28 tháng 10 2020 lúc 20:49

\(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}\right)^3-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}\right)^3+1}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)+\left(x+1\right)}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
28 tháng 10 2020 lúc 20:50

Để xem nào ...

Ta có HĐT : \(\hept{\begin{cases}a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\end{cases}\left(a,b\ge0\right)}\)

\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

ĐKXĐ : x > 0 ; x khác 1

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

Khách vãng lai đã xóa
Hoàng Trần
Xem chi tiết
LuKenz
Xem chi tiết
Phạm Ngọc Uyên Nhi
Xem chi tiết
alibaba nguyễn
13 tháng 9 2018 lúc 8:21

\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)

\(C=-x\sqrt{x}+x+\sqrt{x}-1\)

\(D=x-\sqrt{x}+1\)

Phạm Ngọc Uyên Nhi
13 tháng 9 2018 lúc 18:26

có đáp án kĩ hơn không ạ ?

alibaba nguyễn
13 tháng 9 2018 lúc 18:55

Mấy cái này chỉ có nhân lên rồi rút gọn thôi ah. Nên mình cho bạn đáp án để kiểm tra lại thôi ah

Đỗ Thị Minh Anh
Xem chi tiết
B.Thị Anh Thơ
4 tháng 8 2019 lúc 22:12
https://i.imgur.com/BCUaQYE.png
Trịnh Long
Xem chi tiết
Nguyễn Hàn Băng
Xem chi tiết
Yuzu
11 tháng 8 2019 lúc 20:35

2.

a)

\(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\\ =\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(2+\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}\right)\\ =\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\\ =2^2-\left(\sqrt{a}\right)^2\\ =4-a\)

b)

\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\\ =\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\frac{x-1}{\sqrt{x}}\cdot\frac{x}{\sqrt{x}+1}\\ =\sqrt{x}\left(\sqrt{x}-1\right)\\ =x-\sqrt{x}\)

c)

\(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\\ =\left(\frac{1-\sqrt{x^3}}{1-x}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\\ =\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left[\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\right]^2}\\ =\left(\frac{1+\sqrt{x}+x+\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\\ =\frac{2x+2\sqrt{x}+1}{1+\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{2x+2\sqrt{x}+1}{\left(1+\sqrt{x}\right)^3}\)

Yuzu
11 tháng 8 2019 lúc 20:15

1. (Ko viết lại đề nha :v)

a)

\(A=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\\ =\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\left(\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2}{x-1}\)

b) Để A đạt giá trị nguyên thì \(2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\\ \Leftrightarrow x\in\left\{0;2;-1;3\right\}\)

Vậy......

Trần ngô hạ uyên
Xem chi tiết