cho tam giác ABC đều.Gọi G là trọng tâm của tam giác.CMR:G là giao điểm 3 đường trung trực của ΔABC
Cho tam giác ABC có trung tuyến AM. Gọi H là trực tâm, O là giao điểm các đường trung trực của tam giác ABC. Giao điểm của AM và HO là G. Chứng minh rằng G là trọng tâm của tam giác ABC
cho tam giác abc có M trung điểm của BC ,N là trung điểm của AC ,đường trung trực BC cắt dường trung trực của AC tại O,gọi H là trực tâm tam giác ABC
a cm tam giác AHB đồng dạng tam giác MNO
b gọi G là giao điểm của OH với AM cmr G là trọng tâm của tam giác ABC
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB
Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:
a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;
b) Nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.
a)
Ta có:
G là trọng tâm của tam giác ABC (giao điểm của ba đường trung tuyến);
H là trực tâm của tam giác ABC (giao điểm của ba đường cao);
I là giao điểm của ba đường phân giác của tam giác ABC;
O là giao điểm của ba đường trung trực của tam giác ABC (Đường trung trực đi qua trung điểm của cạnh và vuông góc với cạnh tại trung điểm đó).
Mà tam giác ABC đều nên trong tam giác ABC đường trung tuyến đồng thời là đường cao và là đường phân giác.
Vậy bốn điểm G, H, I, O trùng nhau hay nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau.
b)
Giả sử trong tam giác ABC có hai điểm trùng nhau là H (trực tâm của tam giác) và I (giao của ba đường phân giác).
Hay AD, BE, CF vừa là đường cao, vừa là đường phân giác của tam giác ABC.
Xét tam giác ADB và tam giác ADC có:
\(\widehat {BAD} = \widehat {CAD}\) ( vì AD là tia phân giác của góc BAC)
AD chung;
\(\widehat {ADB} = \widehat {ADC}(=90^0)\) (vì \(AD \bot BC\));
Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC( 2 cạnh tương ứng). (1)
Tương tự ta có: \(\Delta AEB = \Delta CEB\)(c.g.c). Suy ra: AB = BC ( 2 cạnh tương ứng). (2)
Từ (1) và (2) suy ra: AB = BC = AC.
Vậy tam giác ABC đều hay nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.
ho tam giác ABC nhọn . gọi H là trực tâm, O là giao điểm của 3 đường trung trực của tam giác đó.lấy điểm K sao cho O là trung điểm của AK.a) Chứng minh tứ giác BHCK là hình bình hành . b) vẽ trung tuyến AM cắt OH tại G. Chứng minh G là trọng tâm của tam giác ABC
cho tam giác nhọn ABC, trung tuyến AM. Gọi H là trực tâm, O là giao điểm của các đường trung trực của tam giác ABC. CMR :
a, So sánh AH và OM.
b, gọi G là giao điểm của AM và HO. CMR G là trọng tâm của tam giác ABC
Cho tam giác nhọn ABC, trung tuyến AM. Gọi H là trực tâm, O là giao điểm của các đường trung trực của ΔABC.
a. So sánh AH và OM
b. Gọi G là giao điểm của AM và OH. Chứng minh G là trọng tâm của
Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là giao điểm các đường trung trực của tam giác. Chứng minh rằng: H, G, O thẳng hàng và HG=2GO
Cho tam giác ABC có trung tuyến AM . Gọi H là trực tâm, O là giao điểm của các đường trung trực của tam giác ABC . Giao điểm của AM và HO là G . CMR : G là trọng tâm của tam giác ABC
Mn nhớ zúp mk nhoa !! Thks nhìu :)) Đúng sẽ tik <33
Ây za cách này khá là cùi bắp nhưng mà em tham khảo nhé:
Lấy điểm K đối xứng với C qua O
Xét tam giác CKB có: O là trung điểm CK , M là trung điểm BC
Gọi N là điểm đối xứng với O qua M
Tam giác OCM=tam giác NBM
=> OC//BN
OC=BN
Tam giác OBN = tam giác BOK (1)
=> ON=KB
mà OM=1/2ON
=> OM=1/2KB
Từ (1) suy ra đc OM//KB
mà OM//AH ( cùng vuông Bc)
=> KB//AH (3)
Chứng minh tương tự => BH//KA (4)
Từ (3), (4) chứng minh đc tam giác KBA=HAB
=> KB=HA
=> OM=1/2 AH
Sử dụng định lí Ta let
OM//AH=> \(\frac{GM}{AG}=\frac{OM}{AH}=\frac{1}{2}\)
mà AM là đường trung tuyến
=> G là trọng tâm.
Cô ơi...Lớp 7 đã học Ta-lét đâu ạ=((