Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hương Giang
Xem chi tiết
HT.Phong (9A5)
12 tháng 8 2023 lúc 14:51

\(\left(3x+1\right)^2-\left(3x-1\right)^2\)

\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)

\(=2\cdot6x\)

\(=12x\)

_________

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

\(=2x\cdot2y\)

\(=4xy\)

HT.Phong (9A5)
12 tháng 8 2023 lúc 14:59

\(\left(x+y\right)^3+\left(x-y\right)^3\)

\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)

\(=2x\cdot\left(x^2+3y^2\right)\)

______

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)

duong lee
Xem chi tiết
Minh Triều
5 tháng 7 2015 lúc 11:05

đặt y=x2+1

=>y2=(x2+1)2

y2=x4+2x2+1

đặt P(x)=x^4+6x^3+11x^2+6x+1

=x4+2x2+1+6x3+6x+9x2

=x4+2x+1+6x(x2+1)+9x2

thay y2=x4+2x2+1 và y=x2+1 ta được 

Q(y)=y2+6xy+9x2

=(y+3x)2

thay y=x2+1 ta được:

(x2+3x+1)2

vậy x^4+6x^3+11x^2+6x+1=(x2+3x+1)2

Nguyễn Việt Tiến
Xem chi tiết
Nhà Tiên Tri Vũ Trụ Đấng...
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 21:35

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Lâm Phạm cẩm Thùy
Xem chi tiết
Minh Anh
9 tháng 10 2016 lúc 17:52

a) \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)

\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\) 

Đặt: \(x^2-7x+11=t\)

\(\Rightarrow\hept{\begin{cases}x^2-7x+10=t-1\\x^2-7x+12=t+1\end{cases}}\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)

\(=\left(t-1\right)\left(t+1\right)+1\)

\(=t^2-1+1\)

\(=t^2\)

Vậy: \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left(x^2-7x+11\right)^2\)

Trần Hải Yến
Xem chi tiết
Nguyễn Ngọc Anh Minh
7 tháng 11 2016 lúc 10:23

a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)

Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3

=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}

b/ Chia F(x) cho x-1

\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)

Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại

Nguyễn Hiếu Bro
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 8 2021 lúc 17:34

\(z^3\left(x+y^2\right)+y^3\left(z-x^2\right)-x^3\left(y+z^2\right)-xyz\left(xyz-1\right)\)

\(=xz^3+y^2z^3+y^3z-x^2y^3-x^3-x^3z^2-x^2y^2z^2+xyz\)

\(=\left(y^2z^3+y^3z\right)+\left(xz^3+xyz\right)-\left(x^2y^3+x^2y^2z^2\right)-x^3\left(y+z^2\right)\)

\(=y^2z\left(y+z^2\right)+xz\left(y+z^2\right)-x^2y^2\left(y+z^2\right)-x^3\left(y+z^2\right)\)

\(=\left(y+z^2\right)\left(y^2z+xz-x^2y^2-x^3\right)\)

\(=\left(y+z^2\right)\left[z\left(y^2+x\right)-x^2\left(y^2+x\right)\right]\)

\(=\left(y+z^2\right)\left(z-x^2\right)\left(y^2+x\right)\)

Tick hộ nha bạn 😘

 

Nguyễn Hiếu Bro
2 tháng 8 2021 lúc 17:29

z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)

 
Bảo Hân
Xem chi tiết
Boy China
22 tháng 9 2019 lúc 19:42

Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết

ctk_new
22 tháng 9 2019 lúc 19:53

a) \(x^3-4x^2-12x+27\)

\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

b) \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)

b) \(6x-9-x^2=-\left(x-3\right)^2\)

ctk_new
22 tháng 9 2019 lúc 19:56

c) \(x^2+4y^2+4xy=\left(2y+x\right)^2\)

d) \(\left(x-y\right)^2-\left(x+y\right)^2\)

\(=\left(x-y+x+y\right)\left(x-y-x-y\right)\)

\(=2x.\left(-2y\right)=-4xy\)

e) \(\left(2x-1\right)^2-\left(x-1\right)^2\)

\(=\left(2x-1-x+1\right)\left(2x-1+x-1\right)\)

\(=x\left(3x-2\right)\)

g) \(x^2+5x-6\)

\(=x^2+6x-x-6\)

\(=x\left(x+6\right)-\left(x+6\right)\)

\(=\left(x-1\right)\left(x-6\right)\)

super xity
Xem chi tiết
Min
1 tháng 11 2015 lúc 21:01

\(x^3-x^2-8x+12\)

\(=x^3+3x^2-4x^2-12x+4x+12\)

\(=x^2\left(x+3\right)-4x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-4x+4\right)\)

\(=\left(x+3\right)\left(x-2\right)^2\)