cho pt: x^2 - 2mx + m = 7
tính theo m: \(\frac{1}{x_1^3}+\frac{1}{x_2^3}\)
cho pt \(x^2-2mx+m^2+2m-6=0\)
a) tìm m để pt có nghiệm
b) với \(x_1x_2\) là 2 nghiệm của pt. Tính \(x_1+x_2\) và \(x_1.x_2\) theo m
c) tìm m để \(x_1.x_2=3.x_1+3.x_2-1\)
\(\Delta'=m^2-\left(m^2+2m-6\right)=-2m+6\)
a.
Pt có nghiệm khi \(-2m+6\ge0\Rightarrow m\le3\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+2m-6\end{matrix}\right.\)
c.
\(x_1x_2=3x_1+3x_2-1\)
\(\Leftrightarrow x_1x_2=3\left(x_1+x_2\right)-1\)
\(\Leftrightarrow m^2+2m-6=3.2m-1\)
\(\Leftrightarrow m^2-4m-5=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=5>3\left(loại\right)\end{matrix}\right.\)
1.Giải pt:\(\left\{{}\begin{matrix}5\left|x-3\right|+\frac{12}{x+y}=\frac{21}{2}\\_{ }\left|3-x\right|+\frac{1}{x+y}=\frac{7}{4}\end{matrix}\right.\)
2.Cho pt:\(x^2-2mx+3m+9=0\) (m là tham số)
Tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) sao cho:\(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2+9\right)=27\)
1.Cho pt:\(x^2-2x+m-1=0\) (m là tham số)
Tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) :
a)\(x_1=2x_2\)
b)\(\left|x_1-x_2\right|=4\)
2.Cho pt: \(x^2-2mx+m^2-1=0\) (m là tham số)
Tìm m để ơt có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn:
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{-2}{x_1.x_2}+1\)
Cho pt: \(x^2-2mx-4m-11=0\) (x là ẩn, m là tham số)
a) Giải PT khi m= 1
b) Chứng tỏ pt luôn có 2 nghiệm phân biệt với mọi m
c) Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\)
b/ \(\Delta'=m^2+4m+11=\left(m+2\right)^2+7>0\) \(\forall m\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
c/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=-5\)
\(\Leftrightarrow\frac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
\(\Leftrightarrow\frac{4m^2+8m+22-2m}{-4m-11-2m+1}=-5\Leftrightarrow4m^2+6m+22=30m+50\)
\(\Leftrightarrow4m^2-24m-28=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=7\end{matrix}\right.\)
Cho pt: \(x^2-2mx-4m-11=0\) (x là ẩn, m là tham số)
a) Giải PT khi m= 1
b) Chứng tỏ pt luôn có 2 nghiệm phân biệt với mọi m
c) Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\)
a) Khi m = 1, pt trở thành:
\(x^2-2x-15=0\\ \Leftrightarrow x^2+3x-5x-15=0\\ \Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(b)\Delta'=b'^2-ac\\ =\left(-m\right)^2-1\left(-4m-11\right)\\ =m^2+4m+11\\ =\left(m^2+2.m.2+2^2\right)+7\\ =\left(m+2\right)^2+7>\forall m\)
\(c)\)Theo hệ thức Vi - ét: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m\\x_1.x_2=\frac{c}{a}=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\\ \Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}=-5\\ \Leftrightarrow\frac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}=-5\\ \Leftrightarrow\frac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\\ \Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
Thay vào là được nhé! Tự tiếp giúp mình
Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>
Cho PT x^3 + x -m -1 = 0 có hai nhiệm x1,x2 thỏa mãn \(\frac{x_1^3-\left(m+2\right)x_1}{x_1^2+1}+\frac{x_2^3-\left(m+2\right)x_2}{x_2^2+1}=-1\)tìm các giá trị của m
cho pt: \(x^2-2mx+m^2-m+1=0\) (x là ẩn số). Tìm m để pt có 2 nghiệm \(x_1;x_2\) sao cho biểu thức A=\(x_1^3+x_2^3-2x_1-2x_2\) đạt giá trị nhỏ nhất.
\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1^3+x_2^3-2\left(x_1+x_2\right)\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-2\left(x_1+x_2\right)\)
\(=8m^3-3.2m\left(m^2-m+1\right)-4m\)
\(=2m^3+6m^2-10m\)
\(=2\left(m^3+3m^2-5m+1\right)-2\)
\(=2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]-2\)
Do \(m\ge1\Rightarrow\left\{{}\begin{matrix}m-1\ge0\\\left(m^2-1\right)+4m>0\end{matrix}\right.\)
\(\Rightarrow2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]\ge0\)
\(\Rightarrow A\ge-2\)
\(A_{min}=-2\) khi \(m=1\)
Cho phương trình bậc hai:x2-2mx+m= 7
a) viết 1 hệ thức liên hệ giữa x1, x2 độc lập với m. tính x1 theo x2
b) tính theo m : \(\frac{1}{x_1^3}+\frac{1}{x_2^3};3x_1^2-2mx_1+2x_2^2+m\)
c) tìm m để pt có 2 nghiệm dương
\(x^2-2mx+m-7=0\)
Phương trình đã cho luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-7\end{matrix}\right.\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1x_2=2m-14\end{matrix}\right.\)
Trừ vế cho vế: \(x_1+x_2-2x_1x_2=14\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
\(\Rightarrow x_1\left(1-2x_2\right)=14-x_2\)
\(\Rightarrow x_1=\frac{14-x_2}{1-2x_2}\)
b/ \(\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{x_1^3+x_2^3}{\left(x_1x_2\right)^3}=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{\left(x_1x_2\right)^3}=\frac{8m^3-6m\left(m-7\right)}{\left(m-7\right)^3}\)
\(A=2\left(x_1^2+x_2^2\right)+x_1^2-2mx_1+m\)
Mặt khác do \(x_1\) là nghiệm nên
\(x_1^2-2mx_1+m=7\)
\(\Rightarrow A=2\left(x_1^2+x_2^2\right)+7=2\left(x_1+x_2\right)^2-4x_1x_2+7\)
\(=8m^2-4\left(m-7\right)+7=8m^2-4m+35\)
c/ Để pt có 2 nghiệm dương:
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m>0\\m-7>0\end{matrix}\right.\) \(\Rightarrow m>7\)
Cho PT \(mx^2-\left(m+2\right)x+2=0\)( với m là tham số ) gọi \(x_1;x_2\)là các nghiệm của pt đã cho . Hãy tim \(P=\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}\)( theo m )
Phương trình đã cho có nghiệm khi và chỉ khi \(\hept{\begin{cases}m\ne0\\\Delta\ge0\end{cases}}\)
Xét \(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\)
Suy ra phương trình đã cho có 2 nghiệm \(x_1;x_2\)với mọi m khác 0
Theo hệ thức Viet , ta có : \(x_1+x_2=\frac{m+2}{m}\left(1\right);x_1x_2=\frac{2}{m}\)(2)
Ta có \(P=\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{\left(x_1^2+x_2^2\right)+x_1+x_2}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2+\left(x_1+x_2\right)}{x_1x_2}-2\)(3)
Từ (1) , (2) và (3) suy ra \(P=\frac{m^2+m+2}{m}\)với m khác 0