Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Trang Nguyễn Hải
Xem chi tiết
Hoàng Bích Ngọc
Xem chi tiết
Võ Đông Anh Tuấn
3 tháng 8 2016 lúc 14:14

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

haphuong01
3 tháng 8 2016 lúc 15:05

bạn ở dưới phải ghi ngoặc nhọn chứ

Phương Hà
Xem chi tiết
Minh Nhân
30 tháng 6 2021 lúc 14:53

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN 

Trần Anh Đức
Xem chi tiết
KCLH Kedokatoji
24 tháng 7 2020 lúc 20:12

\(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow x^2+\left(x-1\right)^2\ge0\)

Dấu "=" khi: \(\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)(Điều này vô lý)

Vậy dấu "=" không thể xảy ra hay đa thức đã cho không nhận giá trị bằng 0 (vô nghiệm)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
24 tháng 7 2020 lúc 20:09

\(x^2+\left(x-1\right)^2\)

\(\hept{\begin{cases}x^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}\Rightarrow}x^2+\left(x-1\right)^2\ge0\forall x\)

=> Vô nghiệm ( đpcm ) 

Khách vãng lai đã xóa
Serein
24 tháng 7 2020 lúc 20:11

Trả lời :

Do x2 > 0 \(\forall\)x

      (x - 1)2 > 0 \(\forall\)x

=> x2 + (x - 1)2 \(\forall\)x

=> Đa thức vô nghiệm

Khách vãng lai đã xóa
Tường Vy
Xem chi tiết
TV Cuber
7 tháng 5 2022 lúc 23:17

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

TV Cuber
7 tháng 5 2022 lúc 23:15

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

Akai Haruma
7 tháng 5 2022 lúc 23:17

Lời giải:
Ta thấy:

$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$

$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$

Do đó $x=0$ không phải nghiệm của $Q(x)$

wynn_1310
Xem chi tiết
Minh Hiếu
8 tháng 5 2022 lúc 20:58

\(\text{∆}'=3^2-2.2020\)

\(=-4031< 0\)

⇒ phương trình vô nghiệm

Nguyễn Khánh Chi
8 tháng 5 2022 lúc 21:13

Vì 2x^2-6x > 0 với mọi x

=> 2x^2-6x+2020 > 0+2020 với mọi x

=> 2x^2-6x+2020 > 2020 với mọi x

=> A(x) > 0 ( khác 0 )

=> A(x) vô nghiệm

BHQV
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 21:57

Khi x=-3 thì ta sẽ có:

(9-9)*P(-3)=(-6-2)*P(-3+1)

=>-8*P(-2)=0*P(-3)=0

=>x=-2 là nghiệm của P(x)

Khi x=3 thì ta sẽ có;
(9-9)*P(3)=(2*3-2)*P(3+1)

=>4P(4)=0

=>P(4)=0

=>x=4 là nghiệm của P(x)

Khi x=1 thì ta sẽ có:

(2-2)*P(2)=(1-9)*P(1)

=>-8*P(1)=0

=>P(1)=0

=>x=1 là nghiệm của P(x)

=>ĐPCM

Lê Vũ Ngọc Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 20:16

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

#𝒌𝒂𝒎𝒊ㅤ♪
Xem chi tiết
Lê Tài Bảo Châu
26 tháng 4 2019 lúc 10:23

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\forall x\)

Vậy đa thức p(x) vô nghiệm

♥_Tiểu_Báu_♥
26 tháng 4 2019 lúc 10:58

Ta có : \(P\left(x\right)=x^2+1\)

 => \(x^2+1=0\)

=> \(x^2=\left(-1\right)\)

=> \(P\left(x\right)=x^2+1\)  Vô nghiệm

Lê Tài Bảo Châu
26 tháng 4 2019 lúc 11:00

Tiểu báu sai rồi tại sao lại suy ra x2+1 =0 luôn được