Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Minh Nguyệt
20 tháng 5 2020 lúc 23:29
https://i.imgur.com/NqVBDqP.jpg
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 8 2021 lúc 8:41

ABC nội tiếp (I) hay (I) là đường tròn nội tiếp tam giác ABC vậy nhỉ?

Nguyễn Việt Lâm
14 tháng 8 2021 lúc 9:53

I là tâm đường tròn nội tiếp nên nó là giao 3 đường phân giác

MN vuông góc AI \(\Rightarrow\) tam giác AMN cân tại A \(\Rightarrow IM=IN\)

Ta có: \(\widehat{AMI}=90^0-\widehat{MAI}=90^0-\dfrac{1}{2}\widehat{A}=\dfrac{1}{2}\left(180^0-\widehat{A}\right)=\dfrac{1}{2}\left(\widehat{B}+\widehat{C}\right)\)

Mà \(\widehat{AMI}=\widehat{MBI}+\widehat{BIM}=\dfrac{1}{2}\widehat{B}+\widehat{BIM}\)

\(\Rightarrow\dfrac{1}{2}\left(\widehat{B}+\widehat{C}\right)=\dfrac{1}{2}\widehat{B}+\widehat{BIM}\Rightarrow\widehat{BIM}=\dfrac{1}{2}\widehat{C}=\widehat{NCI}\)

Hoàn toàn tương tự, ta có \(\widehat{CIN}=\widehat{MBI}\)

\(\Rightarrow\Delta MBI\sim\Delta NIC\Rightarrow\dfrac{BM}{IN}=\dfrac{IM}{NC}\Rightarrow BM.CN=IN.IM=IM^2\)

\(\Rightarrow IM^2=50\)

\(\Rightarrow\) M thuộc đường tròn tâm I có phương trình: \(\left(x-1\right)^2+y^2=50\)

Kết hợp M thuộc \(x+y+7=0\) và \(x_M< 0\Rightarrow M\left(-6;-1\right)\)

Tới đây coi như xong rồi

Tính \(\overrightarrow{MP}\Rightarrow\) phương trình AB

Tính \(\overrightarrow{MI}\Rightarrow\) phương trình AI (qua I và vuông góc IM)

\(\Rightarrow\) Tọa độ A

Tính tọa độ N (I là trung điểm MN)

\(\Rightarrow\overrightarrow{AN}\Rightarrow\) phương trình AC

Nguyễn Việt Lâm
14 tháng 8 2021 lúc 9:54

undefined

Angry Birds
Xem chi tiết
Thuyền nhỏ Drarry
Xem chi tiết
Thuyền nhỏ Drarry
Xem chi tiết
Tung Duong
8 tháng 4 2021 lúc 10:32

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

Khách vãng lai đã xóa
Trân Trần
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 3 2019 lúc 15:21

G.Dr
Xem chi tiết
Hồng Phúc
31 tháng 5 2021 lúc 15:40

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

Hồng Phúc
31 tháng 5 2021 lúc 15:43

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

Hồng Phúc
31 tháng 5 2021 lúc 21:42

3.

Vì \(P\in d\Rightarrow P=\left(m;m+1\right)\left(m\in R\right)\)

\(\Rightarrow IP=\sqrt{\left(m-1\right)^2+\left(m+1\right)^2}=\sqrt{2m^2+2}\)

Ta có: \(cosAIP=cos60^o=\dfrac{R}{IP}=\dfrac{\sqrt{5}}{IP}=\dfrac{1}{2}\Rightarrow IP=2\sqrt{5}\)

\(\Rightarrow\sqrt{2m^2+2}=2\sqrt{5}\)

\(\Leftrightarrow2m^2+2=20\)

\(\Leftrightarrow m=\pm3\)

\(\Rightarrow\left[{}\begin{matrix}P=\left(3;4\right)\\P=\left(-3;-2\right)\end{matrix}\right.\)

Lê Thành Công
Xem chi tiết
Mai Nguyên Khang
7 tháng 4 2016 lúc 15:25

A F D B E M K C

Có 2 tam giác vuông \(\Delta ABE=\Delta ADF\) vì \(AB=AD\) và \(\widehat{BAE}=\widehat{DAF}\) cùng phụ với \(\widehat{DAE}\)

Suy ra tam giác AEF vuông cân và \(ME=MA=MF\Rightarrow AM\perp EF\)

Ta có \(\overrightarrow{MA}=\left(2;-4\right)\), đường thẳng EF đi qua M có phương trình :

\(2\left(x+4\right)-4\left(y-2\right)=0\Leftrightarrow x-2y+8=0\)

Bây giờ tìm tọa độ các điểm E, F thỏa mãn ME=MA=MF. Gọi T(x;y) thuộc đường thẳng EF, thì x=2t-8; y=t, \(t\in R\)

Khi đó \(MT=MA\Leftrightarrow\left(2t-8+4\right)^2+\left(1-2\right)^2=2^2+\left(-4\right)^2=20\)

                            \(\Leftrightarrow5\left(t-2\right)^2=20\Leftrightarrow t\left(t-4\right)=0\Leftrightarrow\)\(\begin{cases}t=0\\t=4\end{cases}\)

Như vậy có 2 điểm \(t_1\left(-8;0\right);t_2\left(0;4\right)\) ( Chính là 2 điểm E và F) thuộc đường thẳng EF mà \(MT_1=MA\)

- Trường hợp \(E\left(-8;0\right);F\left(0;4\right)\). Do F thuộc đường thẳng CD nên đường thẳng CD nhận \(\overrightarrow{KF}=\left(3;4\right)\) làm vec tơ chỉ phương.

Phương trình đường thẳng CD là \(\begin{cases}x=3t\\y=4+4t\end{cases}\)   (\(t\in R\)).

Khi đó \(D\left(3t;4+4t\right)\)

Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{KF}.\overrightarrow{AD}=0\Rightarrow3\left(3t+6\right)+4\left(-2+4t\right)=0\Leftrightarrow t=-\frac{2}{5}\Rightarrow D\left(-\frac{6}{5};\frac{12}{5}\right)\)

- Trường hợp \(F\left(-8;0\right);E\left(0;4\right)\), đường thẳng CD nhận \(\overrightarrow{FK}=\left(5;0\right)\) làm vec tơ chỉ phương 

Phương trình CD : \(\begin{cases}x=-8+5t\\y=0\end{cases}\)   \(\left(t\in R\right)\)

Khi đó \(D\left(-8+5t;0\right)\)

Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{FK}.\overrightarrow{AD}=0\Leftrightarrow5\left(-2+5t\right)=0\Leftrightarrow t=\frac{2}{5}\Rightarrow D\left(-6;0\right)\)

 

lâm cự giải
6 tháng 10 2017 lúc 11:56

a