Cho phương trình \(mx^2-2\left(2m-1\right)x+3m-2=0\)
Tìm \(m\in Z\) để phương trình có các nghiệm thuộc Z
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x-y=m^2-3m\end{matrix}\right.\)
Trong đó \(m\in Z,m\ne-1\). Xác định m để hệ phương trình có nghiệm nguyên
\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\left(1\right)\\m^2x-y=m^2-3m\end{matrix}\right.\)
\(\Rightarrow\left(m^2+2m+1\right)x=m^2-m-2\)
\(\Rightarrow x=\dfrac{m^2-m-2}{m^2+2m+1}\left(m\ne-1\right)\)
\(\Rightarrow x=1+\dfrac{-3m-3}{m^2+2m+1}=1+\dfrac{-3\left(m+1\right)}{\left(m+1\right)^2}=1+\dfrac{-3}{m+1}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow y=2m-2-\left(2m+1\right)\left(1-\dfrac{3}{m+1}\right)\)
\(\Rightarrow y=\dfrac{3m}{m+1}=3+\dfrac{-1}{m+1}\)
\(\Rightarrow x,y\in Z\left(m\in Z\right)\Leftrightarrow\left\{{}\begin{matrix}m+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\m+1\inƯ\left(1\right)=\left\{\pm1\right\}\end{matrix}\right.\)
\(\Rightarrow m+1=\pm1\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Tìm m để hai phương trình sau có nghiệm chung
a \(2x^2+\left(3m-1\right)x-3=0\) và \(6x^2-\left(2m-1\right)x-1=0\)
b \(x^2-mx+2m+1=0\) và \(mx^2-\left(2m+1\right)x-1=0\)
câu a
Gọi x0 là nghiệm chung của PT(1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\) Lấy (1)-(2) ,ta được
PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0
\(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)
\(\Leftrightarrow m=\dfrac{12}{11}\)
Cho phương trình: \(x^2-2\left(3m+2\right)x+2m^2-3m+5=0\)
a. Giải phương trình với m = -2
b. Tìm các giá trị của m để phương trình trên có một trong các nghiệm bằng 1
c. Tìm các giá trị của m để phương trình trên có nghiệm kép.
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
Đối với mỗi phương trình sau, hãy tìm các giá trị của m để phương trình có nghiệm; tính nghiệm của phương trình theo m :
a) \(mx^2+\left(2m-1\right)x+m+2=0\)
b) \(2x^2-\left(4m+3\right)x+2m^2-1=0\)
Cho phương trình \(x^3-\left(2m-1\right)x^2+\left(2m^2-m+2\right)x-\left(2m^2-3m+2\right)=0.\),với m là tham số.Tìm m để phương trình có 3 nghiệm dương
cho phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)với m là tham số tìm tất cả các giá trị m thuộc Z để phương trình có 2 nghiệm phân biệt x1, x2 sao cho \(P=\frac{x1x2}{x1+x2}\)có giá trị nguyên
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm (x,y) thỏa mãn x2 - 2x - y > 0
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=3m-my\\mx-y=m^2-2\end{matrix}\right.\)
\(\Rightarrow m\left(3m-my\right)-y=m^2-2\)
\(\Leftrightarrow2m^2+2=y\left(1+m^2\right)\)
\(\Leftrightarrow y=\dfrac{2m^2+2}{1+m^2}=2\)
\(\Rightarrow x=3m-2m=m\)
Có \(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)
\(\Leftrightarrow\left(m-1-\sqrt{3}\right)\left(m-1+\sqrt{3}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\)
Vậy...
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)