Cho hình vuông ABCD. Điểm M trên cạnh AB . Điểm N trên cạnh BC. CM cắt AN tại K . Vẽ hình chữ nhật BMHN . HK cắt BC tại Q. HN cắt AD tại E.
Chứng minh tam giác EHD đồng dạng tam giác NHQ.
GIÚP MIK NHÉ . MIK CẦN GẤP 😆😆
Cho hình vuông ABCD. Điểm M trên cạnh AB . Điểm N trên cạnh BC. CM cắt AN tại K . Vẽ hình chữ nhật BMHN . HK cắt BC tại Q. HN cắt AD tại E.
Chứng minh tam giác EHD đồng dạng tam giác NHQ.
GIÚP MIK NHÉ . MIK CẦN GẤP 😆😆
Cho tam giác ABC vuông tại A có AB < AC . Trên cạnh huyền BC lấy điểm K sao cho CK = CA . Vẽ CM vuông góc với AK tại M . Vẽ AD vuông góc với BC tại D . AD cắt CM tại H . Chứng minh :
a) tam giác MCK = tam giác MCA
b) HK //AB
c) HD<HA
Các bạn giúp mình phần c với ạ!
c: Xét ΔCDA có CH là đường phân giác
nên CH/HA=CD/HD
mà CH>CD
nên HA>HD
Cho hình vuông ABCD nhất định M là 1 điểm lấy trên cạnh BC tia AM cắt DC tại P trên tia đối tia DC lấy điểm N sao cho DN=BM
Chứng minh tam giác AND=ABM và tam giác MAN vuông cân
Chứng minh tam giác ABM và tam giác PAD đồng dạng và BC^2=BM.DP
Qua A vẽ đường thẳng vuông góc với MN tại H và cắt CD tại Q ,MN cắt AD ở I chứng minh AH.AQ=AI.AD và góc DAQ=HMQ
Chứng minh tam giác NDH đồng dạng NIQ
cho tam giác abc vuông tại a có ab <ac . trên cạnh huyền bc lấy điểm k sao cho ck+ca .vẽ cm vuông ak tại m . vẽ ad vuông bc tại d .ad cắt cm tại h .chứng minh:a)tam giác mck +tam mca ;b)hk song song ab ;c)hd<ha
Cho hình bình hành ABCD, lấy điểm M tùy ý trên cạnh AB, đường thẳng DM cắt AC tại K và cắt BC tại N
a, Chứng minh: - tam giác NMB đồng dạng với tam giác NDC
- tam giác AKD đồng dạng với tam giác CKN
b, Chứng minh KD2 =KM.KN
c, Biết NB=6cm, NC=15cm, MB= 4cm. tìm tỉ số đồng dạng của: tam giác NMB và tam giác NDC. tính diện tích của hình bình hành ABCD
M.n giải hộ mik vs, mik chỉ biết vẽ hình thôi.
cho tam giác ABC vuông tại A (AB < AC). M là trung điểm của BC vẽ MT vuông AB tại D; ME vuông AC tại E.
a, Tam giác ADME là hình chữ nhật chứng minh.
b, Tam giác CMTE là hình bình hành chứng minh
c, Vẽ AH vuông BC tại H; tứ giác MHDE là hình gì, tại sao ?
d, Qua A vẽ đường thẳng song song vs DH cắt DE tại K; tại thẳng HK cắt AC tại N.
e, Chứng minh HN bình phương bằng AN; CN.
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A cắt CD kéo dài tại F. Kẻ trung tuyên AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a, Chứng minh AE = AF
b, Chứng minh các tam giác AKF, CAF đồng dạng và A F 2 = K F . C F
c, Cho AB = 4 cm, BE = 3 4 BC. Tính diện tích tam giác AEF
d, Khi E di động trên cạnh BC, tia AE cắt CD tại J. Chứng minh biểu thức A E . A J F J có giá trị không phụ thuộc vị trí của E
a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF
b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và F A K ^ = F C A ^ = 45 0 )
=> A F H F = C F A F => A F 2 = K F . C F
c, S A E F = 93 2 c m 2
d, Ta có: AE.AJ=AF.AJ=AD.FJ
=> A E . A J F J = AD không đổi
Cho hình vuông ABCD(AB//CD) góc A =90 độ có đường chéo AB vuông cạnh bên BC Biết AB = 12cm, AD=9 cm
a/ chứng minh tam giác ABD đồng dạng Tam giác BDC
b/Tính diện tích hình thang ABCD
c/gọi E là TRung điểm của DC.từ M bất kì trên Ec kẻ dường thẳng song song với BE cắt BC tại N và BD tại K. Chứng minh MN+NK=2EB
cho hình vuông ABCD , lấy điểm M trên cạnh BC, điểm N trên cạnh DC biết góc MAN = 45 độ . AM, AN cắt BD tại Q và P.
a) Chứng minh tam giác ABQ đồng dạng với tam giác PQM.
b) Kẻ AH vuông góc với MN . Chứng minh rằng AH có giá trị không đổi .
a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0;\widehat{AQP}=\widehat{BQM}\).
\(\Rightarrow\)△APQ∼△BMQ (g-g)
\(\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\)
△ABQ và △PMQ có: \(\dfrac{QP}{QA}=\dfrac{QM}{QB};\widehat{AQB}=\widehat{PQM}\)
\(\Rightarrow\)△ABQ∼△PMQ (c-g-c).
b) △ABQ∼△PMQ \(\Rightarrow\dfrac{PM}{AB}=\dfrac{PQ}{AQ};\widehat{BAQ}=\widehat{MPQ}\Rightarrow MP=\dfrac{PQ}{AQ}.AB\)
△APQ và △BPA có: \(\widehat{QAP}=\widehat{ABP}=45^0;\widehat{APB}\) là góc chung.
\(\Rightarrow\)△APQ∼△BPA (g-g)
\(\Rightarrow\widehat{AQP}=\widehat{BAP}\)
\(\widehat{APM}=\widehat{APQ}+\widehat{MPQ}=180^0-45^0-\widehat{AQP}+\widehat{BAQ}=180^0-45^0-\left(\widehat{BAP}-\widehat{BAQ}\right)=180^0-45^0-45^0=90^0\)
\(\Rightarrow\)MP⊥AN tại P.
△MPN và △AHN có: \(\widehat{MPN}=\widehat{AHN}=90^0;\widehat{ANM}\) là góc chung.
\(\Rightarrow\)△MPN∼△AHN (g-g)
\(\Rightarrow\dfrac{AH}{MP}=\dfrac{AN}{MN};\dfrac{NP}{NH}=\dfrac{NM}{NA}\Rightarrow\dfrac{NP}{NM}=\dfrac{NH}{NA}\)
△APQ và △AMN có: \(\dfrac{NP}{NM}=\dfrac{NH}{NA};\widehat{MAN}\) là góc chung.
\(\Rightarrow\)△APQ∼△AMN (c-g-c)
\(\Rightarrow\dfrac{AQ}{AN}=\dfrac{PQ}{MN}\Rightarrow\dfrac{MN}{AN}=\dfrac{PQ}{AQ}\)
\(\dfrac{AH}{MP}=\dfrac{AN}{MN}\Rightarrow AH=MP.\dfrac{AN}{MN}=\dfrac{PQ}{AQ}.AB.\dfrac{AN}{AM}=AB\) không đổi.