(-1/2 x^3.y^4)- 3x^2y. (-5/4x^4y^7)- 3/4.x^6.y^8
1. x^2-y^2-2x+2y 2. x^3-x+3x^2y+3xy^2+y^3-y. 3. 4x^4y^4+1. 4. x^2-2x-4y^2-4y. 5.x^3-x^2-x+1. 6.x^2y-x^3-9y+9x. 7.x^3-2x^2+x-xy^2. 8.x^2-2x-4y^2-4y.
Ói , hoa mắt chóng mặt nhức đầu ,
Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
1/tính giá trị x+y biết x-3/y-5=3/5 và y-x=4
2/tìm x biết 15-x/7=x+7/4
3/tìm x,y,z biết 4/3x-2y=3/2z-4x=2/4y-3z và x+y-z=-10
4/tìm x,y,z biết x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
mấy bạn giúp mình nha mình cần gấp khoảng 1 giờ đã nộp bài gồi
CÂU 1 :\(\hept{\begin{cases}x^5+xy^4=x^{10}+y^6\\\sqrt{4x+5}+\sqrt{y^2+8}=6\end{cases}}\)
CÂU 2:\(\hept{\begin{cases}x^2\left(y^2+1\right)+2y\left(x^2+x+1\right)=3\\\left(x^2+x\right)\left(y^2+y\right)=1\end{cases}}\)
CÂU 3: \(\hept{\begin{cases}x^3-3x^2y+4y^3=\left(x-2y\right)^2\\\sqrt{x-2y}+\sqrt{3x+2y}=4x-4\end{cases}}\)
bài 5 đa thức N thỏa mãn điều kiện
a) (3x^5-4x^4+6x^3)=(-2x^2).N b) N.(-1/3x^2y^3)=6x^4y^5-3x^3y^4+1/2x^4y^3z c) x^3-3x^2y+3xy^2-y^3=N.(y-x) d) x^4-2x^2y^2+y^4=(y^2-x^2).N
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Tìm giá trị lớn nhất hoặc nhỏ nhấtcủa các đa thức dưới đây:
1> 3x-x^2
2> -(x^2+y^2) + x+3y+10
3> x^2+4x-2
4> -x^2+6x+5
5> -2x^2+4x+5
6> -2x^2-2y^2+2x+2y+15
7> -x^2-4x
8> 4x-x^2-1
9> 5-x^2+2x+4y^2-4y
10> x^2-4x+y^2-8y+6
11> (x-3)(x+5)+4
1) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 là 9/4 tại x = 3/2
2) Ta có : -(x2 + y2) + x + 3y+ 10 = -x2 - y2 + x + 3y + 10 = -(x2 - x + 1/4) - (y2 -3y + 9/4) + 25/2 = -(x - 1/2)2 - (y - 3/2)2 + 25/2
Ta luôn có: -(x - 1/2)2 \(\le\)0 \(\forall\)x
-(y - 3/2)2 \(\le\)0 \(\forall\)y
=> -(x - 1/2)2 - (y - 3/2)2 + 25/2 \(\le\)25/2 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ...
bài 1: phân tích đa thức thanh nhân tử
1) x2 - 2x - 4y2 - 4y 2) x4 + 2x3 - 4x - 4 3) x3 +2x2y -x - 2y
4) 3x2 - 3y2 - 2(x - y)2 5) x3 - 4x2 -9x + 36 6) x2 - y2 - 2x - 2y
7) (3x-1)2 - 16 8) (5x - 4)2 - 49x2 9) (2x +5) - (x-9)2
a) x2 - 2x - 4y2 - 4y
= (x2 - 4y2) - (2x + 4y)
= (x + 2y)(x - 2y) - 2(x + 2y)
= (x + 2y)(x - 2y - 2)
= (x + 2y)[x - 2(y + 1)]
b) x4 + 2x3 - 4x - 4
= (x4 - 4) + ( 2x3 - 4x)
= (x2 - 2)(x2 + 2) + 2x(x2 - 2)
= (x2 - 2)(x2 + 2 + 2x)
c) x3 + 2x2y - x -2y
= (x3 - x) + (2x2y - 2y)
= x(x2 - 1) + 2y(x2 - 1)
= (x + 2y)(x2 - 1)
Bài1: phân tích đa thức thành nhân tử
1) 21x^2y - 12xy^2
2) x^3 + x^2 - 2x
3) 3x. (x - 1) + 7x^2. (x - 1)
4) 3x. (x-a) + 4a. (a-x)
5) 1/2x. (x-2) + 4a. (a-x)
6) 21. (x-y)^2 - 7.(y-x)
7) x^2yz + xy^2z^2 + x^2yz^2
8) 9x^2y^2 + 15x^2y - 21xy^2
9) x^2y^2 - 1
10) x^4y^4 - z^4
11) (x+1)^2 - 24
12) (x+1)^2 - (y+6)^2
13) x^6 + 1
14) -4y^2 + 4y - 1
15) (2a + 3)^2 - (2a + 1)^2
Bài2: tìm x, biết:
a) x^4 - 16x =0
b) x. (x-3) - x +3 =0
c) 4x^2 - 1/4 =0
d) x^3 - 3x^2 + 3x - 1=0
e) 8x^3 - 36x^2 + 54x - 27=0
f) x^2 + 4x = -4
g) x^2 = 6x - 9
Bài 2;
\(a)x^4-16x=0\Rightarrow x^4=16x\Leftrightarrow x^3=16\Leftrightarrow x=\sqrt[3]{16}\)
\(c)4x^2-\frac{1}{4}=0\Leftrightarrow4x^2=\frac{1}{4}\Leftrightarrow x^2=\frac{1}{16}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{1}{4}\end{cases}}\)
\(x.\left(x-3\right)-x+3=0\)
\(x.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(x^3-3x^2+3x-1=0\)
\(\left(x-1\right)^3=0\)( hằng đẳng thức số 5 )
\(\Rightarrow x=1\)
Vậy \(x=1\)