Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Hân Nguyễn Đặng
Xem chi tiết
Thái Đoàn Hoàng
Xem chi tiết
nguyễn con bò
Xem chi tiết
Nhật Hạ
8 tháng 3 2020 lúc 12:04

A B C I K H M ) )

1, Vì IB = IC (gt) ; IM ⊥ BC = { I }

=> IM là đường trung trực của BC

=> MB = MC (tính chất)

2, Xét △HAM vuông tại H và △KAM vuông tại K

Có: AM là cạnh chung

       HAM = KAM (gt)

=> △HAM = △KAM (ch-gn)

=> MH = MK (2 cạnh tương ứng)

3, Vì △HAM = △KAM (cmt) => HA = KA (2 cạnh tương ứng)

Xét △BHM vuông tại H và △CKM vuông tại K

Có: HM = KM (cmt) 

       BM = CM (cmt)

=> △BHM = △CKM (ch-cgv)

=> HB = KC (2 cạnh tương ứng)

Ta có: AC - AB = AK + KC - (AH - HB) = AK + KC - AH + HB = (AK - AH) + (KC + HB) = 0 + 2 . KC = 2KC 

Khách vãng lai đã xóa
nguyễn con bò
8 tháng 3 2020 lúc 16:19

CẢM ƠN BẠN NHIỀU

Khách vãng lai đã xóa
Toản Phan
Xem chi tiết
embe
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2023 lúc 13:00

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có; ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Xét ΔABI vuông tại B và ΔACI vuông tại C có

AI chung

AB=AC

Do đó: ΔABI=ΔACI

=>IB=IC

d: Ta có: IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,M,I thẳng hàng

♥_Tiểu_Báu_♥
Xem chi tiết
Đỗ Khánh Linh
Xem chi tiết
Hoa Vô Khuyết
16 tháng 1 2019 lúc 20:15

a, sét tam giác ABH và tam giác ACH có: AB=AC(gt); góc ABC= góc ACB(gt); BH=CH(gt)

suy ra 2 tam giác đó bằng nhau

suy ra góc AHB=góc AHC=180 độ chia 2=90 độ

hay AH vuông góc vs BC

Hoa Vô Khuyết
16 tháng 1 2019 lúc 20:18

b, xét tam giác ADH và tam giác AIH có: góc DAH = góc IAH(do tam giác ABH= tam giác ACH); AD=AI (do AB=AC;BD=CI); AH chung 

suy ra 2 tam giác đó bằng nhau

suy ra góc DHA= góc IHA

suy ra đpcm

Đỗ Khánh Linh
16 tháng 1 2019 lúc 20:49

Giúp mk câu d vs ạ. mk cần gấp

Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Hưng_11
Xem chi tiết
Nguyễn Tất Đạt
3 tháng 7 2018 lúc 21:03

A B C I E F

Gọi giao điểm của 2 tia EC và BI là F, nối FA.

Xét \(\Delta\)BAI và \(\Delta\)FCI có: AI=CI; ^BAI = ^FCI; ^AIB = ^CIF => \(\Delta\)BAI=\(\Delta\)FCI (g.c.g)

=> AB=CF (2 cạnh tương ứng).

Ta có: AB vuông AC; CE vuông AC => AB // CE hay AB // CF

Xét tứ giác ABCF: AB // CF; AB=CF => Tứ giác ABCF là hình bình hành

=> AF // BC. Mà EI vuông BC nên  EI vuông AF.

Xét \(\Delta\)AEF: AC vuông EF; EI vuông AF; điểm I thuộc AC => I là trực tâm \(\Delta\)AEF

=> FI vuông AE. Lại có: Tứ giác ABCF là hình bình hành;  I là trung điểm đường chéo AC

=> 3 điểm F;I;B thẳng hàng. Vậy khi FI vuông AE thì BI cũng vuông AE (đpcm).