Bài 1. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt cạnh AC tại D. Vẽ đường thẳng qua A vuông góc với BD cắt BC tại E.
a) Chứng minh BA=BE b) Chứng minh tam giác BED là tam giác vuông. c) So sánh AD và DC.
cho ∆ABC có AB<AC. Gọi M là trung điểm của BC. Từ C vẽ đường thẳng // AB cắt tia AM tại D.
a Chứng minh ∆ABM =∆CDM.
b) So sánh AC và CD.
c) Chứng minh AM<AC.
d) So sánh góc BAM và góc CAM.
di so sánh BAN và
CAM
Cho tam giác ABC vuông tại A BM là phân giác của góc B từ M kẻ ME với BC, ME cắt BA tại K
a) CHo AB=3cm; BC=5cm. Tính AC?
b)Chứng minh tam giác ABM= tam giác EBM
c) Chứng minh tam giác AKC cân?
d) Góc ABC bằng 2 lần góc MKC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM
a BE là tia phân giác của góc ABC
b AG đi qua trung điểm của DC
Cho đường tròn (O;R) đường kính AB. Gọi C là điểm thuộc đường tròn (O) sao cho AC > BC
a) Chứng minh ΔABC vuông
b) Tiếp tuyến tại A và C của (O) cắt nhau tại D.
c) Gọi H là giao điểm của OD và AC. Chứng minh 4HO.HD = AC^2
d) Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC tại M. Chứng minh MB là tiếp tuyến của đường tròn (O).
Cho tam giác ABC, vuông ở A , có góc B = 30 độ , vẽ tia phân giác CD , D thuộc AB , trên tia BC lấy điểm M sao CA =CM
a) Cm : Góc DBC = gócACD
b) CM : DA =DM
c) Qua B kẻ BM vuông góc với đường thẳng CD , BH vuông BC . CM BH = BM