Cho phương trình : x2 -4x+q=0
Tìm q để phương trình có nghiệm
Cho phương trình x 2 - 4x + m + 1= 0 . Tìm m để phương trình trên có nghiệm và x 1 . x 2 = 4. Tìm m ?
A. m = - 3
B. Không có giá trị nào
C. m =3
D. m = 2
Đáp án C
Ta có: Δ ' = ( - 2 ) 2 - 1 . ( m + 1 ) = 3 - m
Để phương trình đã cho có nghiệm thì Δ ' = 3 - m ≥ 0 ⇔ m ≤ 3 .
Với điều kiện trên thì phương trình đã cho có 2 nghiệm x 1 ; x 2 .
Theo hệ thức Vi-et ta có: x 1 . x 2 = m + 1
Để x 1 x 1 . x 2 = 4 thì m + 1 = 4 nên m = 3 ( thỏa mãn điều kiện)
Cho phương trình: x²-4x-m²+3=0
Tìm m để phương trình có hai nghiệm x1;x2 thỏa mãn: 5x1+x2=0
Cho phương trình (m + 1) x 2 + 4x + 1 = 0. Tìm m để phương trình đã cho có nghiệm
A. m = -1
B. m = 0
C. m < 1
D. m ⩽ 3
Đáp án D
* Với m = -1 thì phương trình đã cho trở thành: 4x + 1 = 0 ⇔ x = -1/4
Do đó, m = -1 thỏa mãn điều kiện.
* Nếu m ≠ -1 , khi đó phương trình đã cho là phương trình bậc hai một ẩn.
Ta có: △ = 4 2 - 4.(m + 1).1 = 16 - 4m - 4 = 12 - 4m
Để phương trình đã cho có nghiệm khi: △ = 12 - 4m ≥ 0
-4m ≥ - 12 ⇔ m ⩽ 3
Kết hợp 2 trường hợp, để phương trình đã cho có nghiệm thì m ⩽ 3.
Cho phương trình: x²+4x+m=0. tìm m để phương trình có hai nghiệm x1.x2 thỏa mãn x1²+x2²=10
\(\Delta=b^2-4ac=4^2-4m\)
Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta\ge0\Rightarrow16-4m\ge0\Rightarrow m\le4\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{b}{a}=4\\x_1x_2=-\dfrac{c}{a}=-m\end{matrix}\right.\)
Ta có : \(x_1^2+x_2^2=10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow4^2-2.\left(-m\right)=10\)
\(\Leftrightarrow16+2m=10\)
\(\Leftrightarrow m=-3\)
Cho hai phương trình x 2 – 4x + 4= 0 và x 2 + (m + 1)x + m = 0 . Tìm m để hai phương trình trên có nghiệm chung?
A. m = 2 hoặc m = -1
B. m = 1 hoặc m = 2
C. m = -1
D. m = -2
Đáp án D
* Xét phương trình : x 2 – 4 x + 4 = 0
⇔ ( x - 2 ) 2 = 0 ⇔ x - 2 = 0 ⇔ x = 2
Vậy phương trình này có nghiệm duy nhất.
Để hai phương trình đã cho có nghiệm chung khi và chỉ khi x = 2 là nghiệm phương trình
x 2 + ( m + 1 ) x + m = 0 .Suy ra:
2 2 + ( m + 1 ) . 2 + m = 0
⇔ 4 + 2m + 2 + m = 0 ⇔ 6 + 3m = 0
⇔ 3m = -6 ⇔ m = -2
Cho phương trình: \(x^2-4x+2m=0\) (x là ấn phụ)
a) Tìm m để phương trình có 2 nghiệm x1 và x2
b) Gọi x1 và x2 là 2 nghiệm của phương trình trên. Tìm m để \(x1^2+x2^2-x1-x2=16\)
a.
Phương trình có 2 nghiệm khi:
\(\Delta'=4-2m\ge0\Rightarrow m\le2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow16-4m-4=16\)
\(\Leftrightarrow m=-1\) (thỏa mãn)
a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)
Để pt có nghiệm x1, x2 thì \(\Delta>0\)
\(\Leftrightarrow16-8m>0\)
\(\Leftrightarrow-8m>-16\)
\(\Leftrightarrow m< 2\)
b.
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow4^2-2.2m-4-16=0\)
\(\Leftrightarrow-4m-4=0\)
\(\Leftrightarrow m=-1\)
Cho phương trình \(x^2-4x+m-4=0\)(m là tham số). Tìm giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn (x1-1)(x2^2-3x2+m-5)=-2
Cho phương trình x 2 - 4x + (2m - 2) = 0.Tìm m để phương trình trên có 2 nghiệm dương phân biệt ?
A. m = 0
B. m =1
C. m = -1
D. Không có giá trị nào thỏa mãn
Đáp án D
Ta có:
Δ ' = ( - 2 ) 2 - 1 . ( 2 m - 2 ) = 2 - 2 m
Để phương trình đã cho có hai nghiệm dương phân biệt khi và chỉ khi:
Suy ra không có giá trị nào của m thỏa mãn
ĐỊNH LÝ VI-ET
Cho phương trình \(x^2-4x+3m-2=0\)
a) Tìm m để phương trình có nghiệm kép
b) Ko giải phương trình,tính S và P theo m
c) Gọi x1,x2 là 2 nghiệm của phương trình.Tính x1-x2 theo m
d) Tìm giá trị biểu thức của m để phương trình có 2 nghiệm trái dấu
GIẢI DÙM MÌNH CÂU c) và d) nha
c) tim x1 và x2 theo ct;
x1= 16 +can denta ....tu lam
d) c/a <0
lam dc roi chu
Bài 5: Cho phương trình x2 – 4x + 2m - 3 = 0 a) Tìm điều kiện của m để phương trình có 2 nghiệm x1, X2 phân biệt thoả tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau. b) Tìm m để phương trình có 2 nghiệm X), x2 thoả mãn điều kiện x1 = 3x2
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau