cho tam giác ABC có góc A bằng 90 độ, vẽ AH vuông góc BC CMR AH + BC > AB+AC
cho tam giác ABC( A = 90 độ ) vẽ AH vuông góc BC ( H thuộc BC). CMR: AH+BC>AB+AC
mình vẽ trên máy tính nên hơi xấu 1 xíu. Để bài này làm dễ hơn thì ta nên kẻ thêm 2 đường.
Kẻ thêm AK sao cho AB=BK=AK.
Kẻ thêm KM vuông góc với AC.
Xét tam giác MKC vuông tại M có: KC>MC( vì cạnh huyền lớn nhất)
Mà AM= AH; AB=BK(gt)
=> AB+AC<BC+AH
(vì KC+BK+AH >MC+AM+AB).
TICK VÀ CẢM ƠN NHÉ> CHÚC BẠN HỌC TỐT.
cho tam giác ABC có góc A bằng 90 độ AB < AC , AH vuông góc với BC, H thuộc BC . D thuộc AC sao cho AB bằng AD và DE vuông góc với BC , E thuộc BC
CMR; AH bằng HE
Tam giác ABC có góc A bằng 90 độ .kẻ AH vuông góc với BC.trên AB,BC lấy P, Q sao cho CP=CA,AQ=AH.
CMR: a/ PQ vuông góc với AB
b/ AC+BC< BC+AH
Cho tam giác ABC có góc A bằng 90 độ. Đường thẳng AH vuông góc với BC tại H.Trên BC lấy D sao cho BD=BA
a, Chứng minh : Góc BAD = góc ADB
b, Chứng minh : AD là phân giác của góc HAD
c, Vẽ DK vuông góc AC ( K\(\in\)AC) . Chứng minh AH=AK
d, AB+AC < BC+2AH
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)
\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAD}\)
c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
Cho tam giác ABC có góc A = 90 .Vẽ AH vuông góc với BC .Chứng minh : AB+AC < AH + BC
link tham khảo:
https://hoc247.net/hoi-dap/toan-7/chung-minh-ab-ac-bc-ah-biet-tam-giac-abc-vuong-tai-a-co-ah-vuong-goc-bc-faq256527.html
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Cho tam giác ABC có góc BAC= 90 độ. Kẻ AH vuông góc BC ( H thuộc BC). Kẻ HE vuông góc AC( E thuộc AC). CMR AB song song HE.Cho góc ABC=60 độ. Tính góc AHE, BAH.
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \(\widehat{B}=60^o\); \(\widehat{BHA}=90^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
Do AB//HE
=> \(\widehat{BAH}=\widehat{AHE}=30^o\)
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \widehat{B}=60^oB=60o; \widehat{BHA}=90^oBHA=90o
\Rightarrow\widehat{BAH}=30^o⇒BAH=30o
Do AB//HE
=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o
Cho tam giác ABC, góc A = 90 độ, AB<AC. O là trung điểm BC. K thuộc tia đối OA sao cho OA = OK. Vẽ AH vuông góc với BC tại H. Trên tia Hc lấy HD = HA. Đường vuông góc BC tại D cắt AC tại E .
a, CMR: tam giác ABC = CKA
b, CMR: AB = AE
c, M là trung điểm BE, Tính góc CAM?
d, CMR: 1/AB^2 + 1/AC^2 = 1/AH^2
Cho tam giác ABC có góc A = 90 .Vẽ AH vuông góc với BC .Chứng minh : AB+AC < AH + BC