Tìm n thuộc N sao cho n2+2n+30 là số chính phương
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
Tìm n thuộc N sao cho n2+2n+200 là số chính phương
Ban tham khao nk :
x^2+2x+200 = k^2 (với k thuộc N)
k^2-(x^2+2x+1) =199
k^2-(x+1)^2 =199
(k-x-1)(k+x+1)=199 [áp dụng hằng đẳng thức a^2-b^2=(a+b)(a-b)
Vì 199 là số nguyên tố, và x là số tự nhiên suy ra:
{k-x-1=1......(1)
{k+x+1=199....(2)
Từ (1) và (2) ta đựoc: [lấy 2 trừ 1]
x =98
Tìm n thuộc N* sao cho 2n+1 và 3n+1 là số chính phương
Tìm n thuộc N* sao cho 2n+1 và 3n+1 là số chính phương
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Tìm n để n2 - 2n + 2020 là một số chính phương.
Lời giải:
Đặt $n^2-2n+2020=a^2$ với $a\in\mathbb{N}^*$
$\Leftrightarrow (n-1)^2+2019=a^2$
$\Leftrightarrow 2019=(a-n+1)(a+n-1)$
Với $a\in\mathbb{N}^*, n\in\mathbb{N}$ thì $a+n-1>0$
$\Rightarrow a-n+1>0$. Vậy $a+n-1> a-n+1>0$
Mà tích của chúng bằng $2019$ nên ta có các TH sau:
TH1: $a+n-1=2019; a-n+1=1$
$\Rightarrow n=1010$ (tm)
TH2: $a+n-1=673, a-n+1=3$
$\Rightarrow n=336$
tìm số tự nhiên n thuộc N có 2 chữ số sao cho n+1 và 2n+1 đều là số chính phương
tìm số tự nhiên n thuộc N có 2 chữ số sao cho n+1 và 2n+1 đều là số chính phương
tìm số tự nhiên n thuộc N có 2 chữ số sao cho n+1 và 2n+1 đều là số chính phương
Vì n có 2 cguwx số. Theo bài ra: 10 <hoặc bằng n < hoặc bằng 99
=> 11 < hoặc bằng n + 1 < 991 và 21< hoặc bằng 2n + 1< hoặc bằng 199
n + 1 là số chính phương lẻ => n + 1 \(\in\) { 25;36;49;81;121;169;225...}
=> n \(\in\) {24;35;48;80} (1)
2n + 1 là số chính phương lẻ => 2n + 1 \(\in\) { 25;36;49;81;121;169;225...}
=> n \(\in\) {12;24;40;60;84} (2)
Từ (1) và (2) => n= 24
Vậy n = 24 thì n + 1 và 2n + 1 là số chính phương