Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngô thành hải
Xem chi tiết
Xem chi tiết
Đỗ Tuệ Lâm
12 tháng 4 2022 lúc 7:36

để pt trên vô nghiệm thì x sẽ bằng -1 

\(\dfrac{x\left(x+n\right)}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}=0\)

\(x^2+xn+x^2+x-2x-2-2x^2-2x=0\)

thay x = -1 để tìm n:

\(\left(-1\right)^2-n+\left(-1\right)^2-1-2.\left(-1\right)-2-2.\left(-1\right)^2-2.\left(-1\right)=0\)

\(1-n+1-1=0\)

\(1-n=0\)

=> n = 1 thì pt vô nghiệm.

Yên tâm cj thay n= 1 vô tìm x giải ra x = -1(ktm) pt vô nghiệm r.

nguyen thanh truc dao
12 tháng 4 2022 lúc 10:53

Nó lớp 2 thiệt hả bn

Quách Nguyễn Ái Băng
15 tháng 4 2022 lúc 15:51

mất niềm tin về cuộc sống

 

Võ Thùy Phương Trúc
Xem chi tiết
Thanh Hân
Xem chi tiết
Hồng Phúc
20 tháng 1 2021 lúc 19:18

Hệ đã cho vô nghiệm khi

\(m+2=\dfrac{m+1}{3}\ne\dfrac{3}{4}\Leftrightarrow m=-\dfrac{5}{2}\)

Phạm Vũ Thanh Nhàn
Xem chi tiết
Manaka Laala
Xem chi tiết
ILoveMath
16 tháng 1 2022 lúc 16:27

a, Thay m=-1 vào pt ta có:
\(x^2-2\left(m-1\right)x+m^2-3=0\)

\(\Leftrightarrow x^2-2\left(-1-1\right)x+\left(-1\right)^2-3=0\\ \Leftrightarrow x^2+4x-2=0\\ \Leftrightarrow\left(x^2+4x+4\right)-6=0\\ \Leftrightarrow\left(x+2\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+2-\sqrt{6}\right)\left(x+2+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\\x=-2-\sqrt{6}\end{matrix}\right.\)

 

Hoàng
Xem chi tiết
Hoàng
11 tháng 3 2021 lúc 21:38

undefined

Hoàng
11 tháng 3 2021 lúc 21:39

undefined

Thảo Nguyên
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 2 2021 lúc 22:45

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

sunny
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Quoc Binh
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)