cho tam giác nhọn MNP. kẽ MK vuôn góc với NP . biết MP=20cm,MK=12cm,NK=5cm.hãy tính KP và MN.
Cho tam giác MNP có góc M=90 độ,MN=15cm.Kẻ MK vuông góc với NP tại K.Biết MK=12cm,KP=16cm.Tính MP và NK.
Xét tam giác MNK có góc MKN = 90 o
=> MN2= MK2+ NK2 ( theo đ/l py ta go )
=> 152=122 + NK2
=> NK2= 225-144
=> NK2= 81
=> NK= 9 ( cm )
Ta có NK+PK= PN
=> PN= 9+ 16
=> PN= 25 ( cm)
Xét tam giác MNP có góc PMN = 90o
=> PN2= MN2+ MP2 ( THeo đ/l pytago)
=> MP2= PN2-MN2
=> MP2=625 - 225
=> MP2= 400
=> MP=20 (cm)
Cho tam giác MNP vuông tại M, có MN = 8cm, NP = 15cm. Kẻ MK vuông
góc với NP tại K. Tính độ dài các đoạn thẳng: MP, MK, NK, KP.
Câu 10. Cho tam giác MNP có MK vuông góc với NP tại K. Biết MN = 15cm, MP = 20cm, KP
= 16cm. Khi đó chu vi tam giác MNP là:
A. 58cm B. 59cm C. 60cm D. 61cm
cho tam giac mnp vuông tai m. kẻ mk vuông góc np, nk=5cm,mk=12cm.tính mn,kp,np,mp,góc n, góc p
tam giác MNP góc M = 90 độ, MN = 6cm, NP= 10 cm
a) tính MP
b) kẻ MK vuông góc với NP
so sánh MK với MP
c) so sánh NK và KP
a, Theo định lí Pytago tam giác MNP vuông tại M
\(MP=\sqrt{NP^2-MN^2}=8cm\)
b, Ta có MK < MP ( cạnh huyền > cạnh góc vuông tam giác MKP vuông tại K)
Bài 1: Cho tam giác MNP vuông tại M, đưrờng cao MK. Biết MN= 15cm, MK = 12cm.
al Chứng minh AMKN SAPMN
b/ Tính độ dài các đoạn thắng
NK, MP, NP.
c/ Chứng minh MN² = KN.NP
d/ Trên cạnh MP lấy điểm A sao cho
PA = 5 cm, trên cạnh NP lấy điểm C sao
cho PC = 4 cm. Chứng minh
APAC là tam giác vuông.
a: Xét ΔMKN vuông tại K và ΔPMN vuông tại M có
góc N chung
=>ΔMKN đồng dạng với ΔPMN
b: NK=căn 15^2-12^2=9cm
PK=12^2/9=16cm
PN=9+16=25cm
c: ΔMNP vuông tại M có MK là đường cao
nên NM^2=NK*NP
Cho tam giác vuông MNP vuông tại M. Đường cao MI cắt cạnh NP thành hai đoạn là NI=4, IP=9
A, Tính MN, MP, MI, góc N, góc P.
B, Vẽ phân giác NK. Tính MK và KP.
C, Gọi G là giao điểm của NK và MI. Cm tam giác MGK cân.
cho tam giác vuông MNP tại M, đường cao MK. Biết MN= 7cm, NP= 25cm. Tính MP, MK, NK
Áp dụng định lý Py-ta-go cho tam giác MNP vuông tại M:
\(MN^2+MP^2=NP^2\)
Thay số: \(7^2+MP^2=25^2\)
\(\Rightarrow MP=24\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông MNP, đường cao MH ta có:
\(MK.NP=MN.MP\)
Thay số: \(MK.25=7.24\Rightarrow MK=6,72\left(cm\right)\)
Áp dụng định lý Py - ta - go cho tam giác MNK vuông tại K ta có:
\(MK^2+NK^2=MN^2\)
Thay số: \(6,72^2+NK^2=7^2\Rightarrow NK=1,96cm\)
cho tam giác nhọn MNP biết MN=5cm, đg cao MK=4cm
a. Tính số đo góc N, độ dài NK
b. Từ K kẻ KC vuông góc MN, kẻ KD vuông góc MP. Cminh MC.MN=MD. MP
c. Cminh rằng NP=MK(cotN+cotP)
d. Cho KMP=30 độ. Tính PD?
BAN TU VE HINH NHA
a, trong tam giác MNK có \(\sin N=\frac{4}{5}\Rightarrow GOCN\approx53\)
ap dung dl pitago vao tam giac vuong MNK co \(NK^2+MK^2=NM^2\Rightarrow NK^2=5^2-4^2=3^2\Rightarrow NK=3\)
B, ap dung he thuc luong vao tam giac vuong MNK co \(MK^2=MC\cdot MN\)
tam giac vuong MKP co\(MK^2=MD\cdot MP\)
tu day suy ra MC*MN=MD*MP
C, ta co \(NP=NK+KP\)
ma \(NK=MK\cdot cotN\) \(KP=MK\cdot cotP\)
suy ra \(NP=MK\cdot\left(cotN+cotP\right)\)
D, ta co trong tam giac vuong MDK \(MD=MK\cdot cosM=4\cdot cos30=2\sqrt{3}\)
ma trong tam giac vuong MKP c o\(MK^2=MD\cdot MP\Rightarrow MP=\frac{4^2}{2\sqrt{3}}=\frac{8\sqrt{3}}{3}\)
lai co \(MD+DP=MP\Rightarrow DP=\frac{2\sqrt{3}}{3}\)