Cho tam giác ABC có AB = AC,tia phân giác góc A cắt BC tại M
CM RẰNG GÓC AMC>GÓC AM
b)DC>DB
cho tam giác abc có góc b= góc a .tia phân giác có góc a cắt bc tại d chứng minh rằng db = dc , ab= ac
Sửa đề: góc b=góc c
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Suy ra: AB=AC
Ta có: ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh BC
nên D là trung điểm của BC
hay DB=DC
Cho TAm giác ABC có AM là đường Trung tuyến(M thuộc BC). Tia phân giác của Góc AMB cắt AB tại D. Tia phân giác của Góc AMC cắt AC tại E
a)Tính AD/BD biết AM=6,BC=10
b)CM BM/AM=CE/AE
c) CM : DE song song với BC
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)
cho tam giác ABC có AB=AC . tia phân giác của góc BAC cắt BC Tại M .đường thẳng qua M vuông góc với AB tại H đường thẳng qua M cắt AC tại K a/CM tam giác AMB=AMC b/CM tam giác AKm=AHM từ đó so sánh AH và HK c/HK vuông góc AM
cho tam giác ABC có AB=AC . tia phân giác của góc BAC cắt BC Tại M .đường thẳng qua M vuông góc với AB tại H đường thẳng qua M cắt AC tại K a/CM tam giác AMB=AMC b/CM tam giác AKm=AHM từ đó so sánh AH và HK c/HK vuông góc AM
cho tam giác abc với đường trung tuyến am, tia phân giác của góc amb cắt cạnh ab ở d, tia phân giác của góc amc cắt cạnh ac ở e.biết bc= 16 cm, ab= 14, am= 9 Tính độ dài DB,DA
Cho TAm giác ABC có AM là đường Trung tuyến(M thuộc BC). Tia phân giác của Góc AMB cắt AB tại D. Tia phân giác của Góc AMC cắt AC tại E
a) CM : DE song song với BC
b)Cho BC = 6cm AM = 5cm Tính DE
a)
Xét tam giác AMB có: MD là pg góc AMB
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) ( 1 )
Xét tam giác AMC có: MD là pg góc AMC
=> \(\frac{AE}{CE}=\frac{AM}{CM}\)
Mà BM = CM
=> \(\frac{AE}{CE}=\frac{AM}{BM}\) ( 2 )
* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)
=> DE // BC. ( định lí Ta-lét đảo )
Vậy DE // BC.
b)
Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)
Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)
=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)
=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)
=> \(\frac{AD}{AB}=\frac{5}{8}\)
Xét tam giác ABC có: DE // BC
=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )
=> \(\frac{DE}{6}=\frac{5}{8}\)
=> DE = 3,75 ( cm ).
Vậy DE = 3,75 cm.
Cho tam giác ABC có AB<AC. Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy M sao cho AM=AB. Chứng minh DB<DC
Cho tam giác ABC có AB=AC. Tia phân giác của góc BAC cắt cạnh BC tại M. Đường thẳng qua M vuông góc với AB cắt AB tại H, đường thẳng qua M vuông góc với AC cắt AC tại K
a/ CM tam giác AMB=AMC
b/ CM
a/ xét tam giác ABM và tam giác ACM
có : AB = AC (gt)
góc BAM = góc CAM (vì AM là tia phân giác của góc BAC)
AM chung
do đó tam giac AMB = AMC (c-g-c)
Cho tam giác ABC có AB=6cm;AC=3cm;BC=7,5cm. Đường phân giác trong tam giác của góc A cắt BC tại D.
a/ Tính DB,DC
b/ Tìm tỉ số diện tích của hai tam giác ADC và ADB
c/ Tia phân giác của góc ADC cắt AC tại M, Tia phân giác của góc ADB cắt AB ở N, biết. Chứng Minh MN//BC
d/ MN cắt AM tại I . Chứng minh I là trung điểm của MN
Bài 3; Cho tam giác ABC vuông tại A có AB = ½ BC. Tia phân giác của góc B cắt AC tại D. C/m DB = DC
\(\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
mà \(\widehat{DCB}=30^0\)
nên \(\widehat{DBC}=\widehat{DCB}\)
hay ΔDBC cân tại D