P=x/√x-1
Khi √P có nghĩa tìm GTNN của √P
Cho biểu thức
\(B=\frac{x\sqrt{x}+15\sqrt{x}-35}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
a) Tìm x để B có nghĩa
b) Rút gọn B
c) Tính giá trị của B khi \(x=21-4\sqrt{5}\)
d) Tìm x để B = 6
e) Tìm GTNN của B
a/ ĐKXĐ : \(0\le x\ne4\)
\(B=\frac{x\sqrt{x}+15\sqrt{x}-35}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\frac{x\sqrt{x}+15\sqrt{x}-35-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x\sqrt{x}+15\sqrt{x}-35-x+4-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x\sqrt{x}-2x+15\sqrt{x}-30}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(x+15\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{x+15}{\sqrt{x}+1}\)
c/ \(x=21-4\sqrt{5}=\left(2\sqrt{5}-1\right)^2\) thay vào B được
\(B=\frac{21-4\sqrt{5}+15}{2\sqrt{5}-1+1}=\frac{36-4\sqrt{5}}{2\sqrt{5}}=\frac{-10+18\sqrt{5}}{5}\)
d/ Đặt \(t=\sqrt{x},t\ge0\) thì \(B=\frac{t^2+15}{t+1}=6\Leftrightarrow t^2+15=6\left(t+1\right)\Leftrightarrow t^2-6t+9=0\Leftrightarrow t=3\)
=> x = 9
e/ \(B=\frac{t^2+15}{t+1}=\frac{6\left(t+1\right)+\left(t^2-6t+9\right)}{t+1}=\frac{\left(t-3\right)^2}{t+1}+6\ge6\)
Đẳng thức xảy ra khi t = 3 <=> x = 9
Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9
a/ ĐKXĐ : 0≤x≠4
B=x√x+15√x−35x−√x−2 −√x+2√x+1 −√x−1√x−2
=x√x+15√x−35−(√x+2)(√x−2)−(√x+1)(√x−1)(√x+1)(√x−2)
=x√x+15√x−35−x+4−x+1(√x+1)(√x−2)
=x√x−2x+15√x−30(√x+1)(√x−2) =(√x−2)(x+15)(√x+1)(√x−2) =x+15√x+1
c/ x=21−4√5=(2√5−1)2 thay vào B được
B=21−4√5+152√5−1+1 =36−4√52√5 =−10+18√55
d/ Đặt t=√x,t≥0 thì B=t2+15t+1 =6⇔t2+15=6(t+1)⇔t2−6t+9=0⇔t=3
=> x = 9
e/ B=t2+15t+1 =6(t+1)+(t2−6t+9)t+1 =(t−3)2t+1 +6≥6
Đẳng thức xảy ra khi t = 3 <=> x = 9
Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9
cho B = \sqrt{x+2017}+2018
a, tìm x để B có nghĩa
b, tìm GTNN của B
Cho P=\(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a,tim điều kiện của x để P có nghĩa
b,rút gọn P
c,tìm già trị nguyên của x để Pđạt giá trị nguyên
d,tìm x để P có GTNN
Tìm GTNN của f(x) = x +1/(x-1) khi x>1
=x-1+1/(x-1)+1>=2căn((x-1)(1/(x-1))+1=3
giá trị nhỏ nhất x+1/(x-1) là 3 (bđt Cô si)
khi x=2
Áp dụng BĐT cosi ta có:
\(x-1>0;\frac{1}{x-1}>0\)
\(\Rightarrow x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right)\frac{1}{x-1}}\)
\(\Rightarrow x-1+\frac{1}{x-1}\ge2\Rightarrow x+\frac{1}{x-1}\ge3\)
Vậy f(x) đạt GTNN là 3 khi x = 2
tìm gtnn của x^2/(x-1) khi x >1
x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4
Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)
Vậy GTNN của x^2/x-1 = 4 <=> x= 2
k mk nha
bài 1 tìm GTNN của /x/ + /x+1/+/x+2/+/x+3/
bài 2 tìm GTLN của /x-1/+/x-2/+/x-3/
chú thích / / có nghĩa là dấu trị tuyệt đối
bài 1 :
Cho A= 2017+√2016-x
tìm x để A có nghĩa
tìm x để A đạt GTNN
bài 2:
Cho √A=99...96 (100 chữ số 9). Tính tổng các chữ số của A
Tìm GTNN của P = xᒾ+2x+1/x- 1 khi x>1
\(P-8=\dfrac{x^2-6x+9}{x-1}=\dfrac{\left(x-3\right)^2}{x-1}\ge0\) (Do x > 1 và \(\left(x-3\right)^2\ge0\forall x\in R\)).
Do đó \(P\ge8\). Dấu "=" xảy ra khi x = 3.
Tìm GTNN của P=x2/x-1 khi x>1
\(P_{min}\Leftrightarrow\frac{x^2}{x-1}\)nhỏ nhất
\(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)
\(\Rightarrow P=0\)
Cũng lớp 8 nè <3
\(P=\frac{x^2-1+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)
Áp dụng Cô si ,ta có:
\(x-1+\frac{1}{x-1}\ge2\)
\(\Rightarrow x-1+\frac{1}{x-1}+2\ge2+2=4\)
Min P=4 khi x=2