cho các số thực x,y thỏa mãn \(\frac{x^2}{9}+\frac{y^2}{16}=36\). tìm gtnn, gtln của p=x-y+2004
Tìm GTLN và GTNN của P=x-y+2015 trong đó x,y thỏa mãn \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
Từ giả thiết ta suy ra \(16x^2+9y^2=72^2.\) Theo bất đẳng thức Bunhia: \(36\times25=\left(\frac{x^2}{9}+\frac{y^2}{16}\right)\left(9+16\right)=\left(\frac{x^2}{9}+\frac{\left(-y\right)^2}{16}\right)\left(9+16\right)\ge\left(x-y\right)^2\to-30\le x-y\le30.\)
Do đó \(1985\le P\le2045\).
Khi \(x=\frac{54}{5},y=-\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=2045.\)
Khi \(x=-\frac{54}{5},y=\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=1985.\)
Vậy giá trị lớn nhất của \(P\) là \(2045\) và giá trị bé nhất là \(1985.\)
Tìm min, max của p=x-y+2004, trong đó các số thự x;y thỏa \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
cho x, y thỏa mãn : x^2/y + y^2/16 =36
Tìm GTNN,GTLN của S=x-y+2008
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(B=\frac{xy}{2x+y}+\frac{3yz}{2y+z}+\frac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!
À mà để phải là tìm Max mới đúng chứ nhỉ?
Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:
"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x=y=z=1/3
Vậy A max = 3/4 khi x=y=z=1/3
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2
\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)( \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))
=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Tìm GTLN và GTNN B=x+y+z
Biết x;y;z là các số thực thỏa mãn\(y^2+yz+z^2=2-\frac{3x^2}{2}\)
Cho x ; y là các số thực thỏa mãn : 4x^2 + y^2 = 1 Tìm GTLN ; GTNN của bt A = \(\frac{2x+3y}{2x+y+2}\)
A = \(\frac{2x+3y}{2x+y+2}\)
<=> A(2x + y + 2) = 2x + 3y
<=> 2x.A + y.A + 2.A = 2x + 3y
<=> 2x(1 - A) + (3 - A).y = 2.A
Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]2 < (4x2 + y2) .[(1 - A)2 + (3 - A)2]
=> (2.A)2 < 2A2 -8A + 10
<=> - 2A2 - 8A + 10 > 0
<=> A2 + 4A - 5 < 0
<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1
Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y2 = 1 => x ; y
Max A = 1 tại....