So sánh phân số: \(\frac{5}{6}và\frac{7}{9}\)\(\frac{5}{12}Và\frac{3}{8}\)
So sánh các phân số sau:
\(\frac{7}{8}\)và \(\frac{8}{7}\);\(\frac{5}{6}\)và \(\frac{6}{5}\);\(\frac{5}{9}\)và\(\frac{6}{9}\);\(\frac{7}{2}\)và\(\frac{5}{2}\);\(\frac{8}{5}\)và\(\frac{8}{9}\);\(\frac{12}{34}\)và\(\frac{12}{45}\)
Thực hiện phép chia luỹ thừa cấp 3 sau và so sánh với các phân số dưới đây:
\( a)\frac{8^{6^{5^{4}}}}{7^{7^{4^{5}}}} \) và \(\frac{5}{9} \)
\(b)\frac{4^{7^{9^{13}}}}{5^{6^{8^{14}}}} \) và \(\frac{5}{4} \)
Lớp 6 chưa được học cái này mà
\(a^{n^{n^n}}\)
Bạn EᑕSTᗩSY ᗰᗩTᕼ ơi, \(a^{n^{n^{...}}}\)là lũy thừa tầng, lớp 6 nâng cao mới học nhé!
Nhưng bn kêu mk là Hưng cũng được, xem các câu hỏi khác của mk đi
Cho \(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
So sánh S với 10
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
\(\frac{1+2+3+4+5}{6+7+8+9+10}\)và \(\frac{11+12+13+14+15}{5+6+7+8+9}\)
So sánh nhé các bạn
Gợi ý: Rút gọn 2 ps, quy đồng rồi so sánh.
So sánh hai phân số:
a) \(\frac{{ - 3}}{8}\) và \(\frac{{ - 5}}{{24}}\) b) \(\frac{{ - 2}}{{ - 5}}\) và \(\frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}}\) và \(\frac{{ - 7}}{{20}}\) c) \(\frac{{ - 5}}{4}\) và \(\frac{{23}}{{ - 20}}\).
a) \(\frac{{ - 3}}{8} = \frac{{ - 3.3}}{{8.3}} = \frac{{ - 9}}{{24}}\)
Vì -9 < -5 nên \(\frac{{ - 9}}{{24}} < \frac{{ - 5}}{{24}}\)
Vậy \(\frac{{ - 3}}{8} < \frac{{ - 5}}{{24}}\).
b) Cách 1: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5}; \frac{3}{{ - 5}} = \frac{-3}{{5}}\)
Vì 2 > -3 nên \(\frac{2}{5} > \frac{-3}{{5}}\)
Vậy \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
Cách 2: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5} > 0\) mà \(\frac{3}{{ - 5}} < 0\)
\(\Rightarrow\) \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}} = \frac{3}{{10}} = \frac{{3.2}}{{10.2}} = \frac{6}{{20}}\)
\(\frac{{ - 7}}{{ - 20}} = \frac{7}{{20}}\)
Vì 6 < 7 nên \(\frac{6}{{20}} < \frac{7}{{20}}\) nên \(\frac{{ - 3}}{{ - 10}} < \frac{{ - 7}}{{ - 20}}\).
d) \(\frac{{ - 5}}{4} = \frac{{ - 5.5}}{{4.5}} = \frac{{ - 25}}{{20}}; \frac{{ 23}}{{-20}}=\frac{{-23}}{{20}} \)
Vì -25 < -23 nên \( \frac{{ - 25}}{{20}} < \frac{{-23}}{{20}} \)
Vậy \(\frac{{ - 5}}{4} < \frac{{23}}{{ - 20}}\).
1. Quy đồng mẫu các phân số sau:
a) \(\frac{5}{{12}}\) và \(\frac{7}{{15}}\); b) \(\frac{2}{7};\,\,\frac{4}{9}\) và \(\frac{7}{{12}}\).
2. Thực hiện các phép tính sau:
a) \(\frac{3}{8} + \frac{5}{{24}};\) b) \(\frac{7}{{16}} - \frac{5}{{12}}.\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).
a) Quy đồng mẫu các phân số sau:
i.\(\frac{5}{{12}}\) và \(\frac{7}{{30}}\); ii.\(\frac{1}{2};\,\,\frac{3}{5}\) và \(\frac{5}{8}\).
b) Thực hiện các phép tính sau:
i.\(\frac{1}{6} + \frac{5}{8}\); ii.\(\frac{{11}}{24} - \frac{7}{{30}}\)
a)
i.Ta có: BCNN(12, 30) = 60
60 : 12 = 5; 60 : 30 = 2. Do đó:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\) và \(\frac{7}{{30}} = \frac{{7.2}}{{30.2}} = \frac{{14}}{{60}}.\)
ii.Ta có: BCNN(2, 5, 8) = 40
40 : 2 = 20; 40 : 5 = 8; 40 : 8 = 5. Do đó:
\(\frac{1}{2} = \frac{{1.20}}{{2.20}} = \frac{{20}}{{40}}\)
\(\frac{3}{5} = \frac{{3.8}}{{5.8}} = \frac{{24}}{{40}}\)
\(\frac{5}{8} = \frac{{5.5}}{{8.5}} = \frac{{25}}{{40}}\).
b)
i.Ta có: BCNN(6, 8) = 24
24 : 6 = 4; 24: 8 = 3. Do đó
\(\begin{array}{l}\frac{1}{6} + \frac{5}{8} = \frac{{1.4}}{{6.4}} + \frac{{5.3}}{{8.3}}\\ = \frac{4}{{24}} + \frac{{15}}{{24}} = \frac{{19}}{{24}}.\end{array}\)
ii. Ta có: BCNN(24, 30) = 120
120: 24 = 5; 120: 30 = 4. Do đó:
\(\begin{array}{l}\frac{{11}}{{24}} - \frac{7}{{30}} = \frac{{11.5}}{{24.5}} - \frac{{7.4}}{{30.4}}\\ = \frac{{55}}{{120}} - \frac{{28}}{{120}} = \frac{{27}}{{120}} = \frac{9}{{40}}\end{array}\)
So sánh hai phân số: \(\frac{-7}{31}va\frac{6}{31}\);\(\frac{-97}{128}va\frac{-99}{128}\) ;\(\frac{3}{7}va\frac{-6}{7}\);\(\frac{2}{5}va\frac{4}{5}\)\(\frac{-2}{5}va\frac{13}{5}\)\(\frac{4}{9}va\frac{7}{9}\)\(\frac{5}{12}va\frac{7}{12}\)\(\frac{-7}{15}va\frac{-8}{15}\)\(\frac{-2}{5}va\frac{4}{5}\)\(\frac{4}{7}va\frac{3}{7}\)\(\frac{-11}{13}va\frac{-15}{13}\)\(\frac{-2}{7}va\frac{-4}{14}\)\(\frac{_{-5}}{7}va\frac{-10}{7}\)\(\frac{-13}{5}va\frac{1}{5}\)\(\frac{-6}{7}va\frac{-3}{7}\)\(\frac{3}{7}va\frac{5}{7}\)\(\frac{-7}{9}va\frac{-5}{9}\)\(\frac{-3}{7}va\frac{-5}{7}\)\(\frac{-13}{9}va\frac{1}{9}\) so sánh số cùng mẫu số \(\frac{-7}{13};\frac{-4}{13}\) \(\frac{1}{7};\frac{-4}{-7}\)
So sánh hai phân số:
\(\frac{6}{5}and\frac{5}{6}\);\(\frac{8}{9}and\frac{21}{81}\);\(\frac{9}{63}and\frac{90}{7}\);\(\frac{8}{81}and\frac{10}{9}\)
6/5 > 5/6
8/9 > 21/81
9/63 < 90/7
8/81 < 10/9
Tk mk nha
so sánh với 1
rút gọn hoặc quy đồng số còn lại để so sánh tử
so sánh với 1
cũng so sánh với 1
bạn đùa hay hỏi thật vậy
\(\frac{6}{5}>\frac{5}{6}\)
\(\frac{8}{9}>\frac{21}{28}\)
\(\frac{9}{63}< \)\(\frac{90}{7}\)
\(\frac{8}{81}< \frac{10}{9}\)