Giải bất phương trình với a,b là các hằng số( a khác 0).
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
CMR phương trình sau có 3 nghiệm phân biệt với a,b là hằng,a,b khác 0 a+_b khác 0
\(\frac{x-a}{b}+\frac{x-b}{a}=\frac{b}{x-a}+\frac{a}{x-b}\)
1. giải các phương trình :
a) $\frac{\sqrt[2]{2x-3}}{ \sqrt[2]{x-1}}$ = 2
b) x-5 $\sqrt[2]{x-2}$ = -2
2. chứng minh bất đẳng thức :
a) $\frac{a^{2}+3}{ \sqrt[n]{a^{2}+2}}$>2
b) $\sqrt[2]{a}$ + $\sqrt[2]{b}$ $\leq$ $\frac{a}{\sqrt[2]{b}}$ + $\frac{b}{\sqrt[2]{a}}$
với a >0; b>0
2:
a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)
=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
A=2 thì a^2+2=1
=>a^2=-1(loại)
=>A>2 với mọi a
b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)
=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)
=>(căn a+căn b)(a-2*căn ab+b)>=0
=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)
1
ĐK: `x>1`
PT trở thành:
\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
Vậy PT vô nghiệm.
b
ĐK: \(x\ge2\)
Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))
=> \(x=t^2+2\)
PT trở thành: \(t^2+2-5t+2=0\)
\(\Leftrightarrow t^2-5t+4=0\)
nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)
\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)
1/Giải phương trình sau :
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
2/ Cho a, b, c là các số khác 0 và đôi một khác nhau , thỏa mãn đẳng thức a + b + c = 0 . Chứng minh rằng :
\(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2=0\)
2, (trích đề thi học sinh giỏi Bến Tre-1993)
\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0
=> đpcm
*bài này tui làm tắt, không hiểu ib
Vừa lm xog bị troll chứ, tuk quá
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)
Khử mẫu :
\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)
Tự xử nốt, lm bài này muốn phát điên mất.
đk \(x\ne\pm b\)
quy đồng mẫu, khử mẫu chung, ta đưa phương trình đã cho về phương trình
\(\left(x^2-b^2\right)\left[\left(1-a\right)-\left(1-a^2\right)x\right]=0\)(1)
với điều kiện x2-b2 khác 0, phương trình (1)trở thành (1-a)-(1-a2)x=0 <=> (1-a2)x=1-a (2)
với a=\(\pm\)1 => (2) vô ngiệm => (1) cũng vô nghiệm và phương trình đã cho cũng vô nghiệm
với a khác \(\pm\)1 => (2) có nghiệm \(x=\frac{1}{1+a}\)
để giá trị x=\(\frac{1}{1+a}\)là nghiệm của phương trình đã cho thì \(\frac{1}{1+a}\ne\pm b\)
kết quả: a=\(\pm1\Rightarrow S=\varnothing\)
\(\hept{\begin{cases}a\ne\pm1\\\frac{1}{1+a}\ne\pm b\end{cases}\Rightarrow S=\left\{\frac{1}{1+a}\right\}}\)
\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}\)+\(\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}\)+\(\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}\)=0 (a,b,c là hằng số và đôi một khác nhau)
Giải phương trình.
Đặt \(\hept{\begin{cases}\left(b-c\right)\left(1+a\right)^2=m\\\left(c-a\right)\left(1+b\right)^2=n\\\left(a-b\right)\left(1+c\right)^2=p\end{cases}}\)
khi đó pt đã cho có dạng \(\frac{m}{x+a^2}+\frac{n}{x+b^2}+\frac{p}{x+c^2}=0\)
\(\Rightarrow m\left(x+a^2\right)\left(x+b^2\right)+n\left(x+a^2\right)\left(x+c^2\right)+p\left(x+b^2\right)\left(x+c^2\right)=0\)
\(\Rightarrow x^2\left(m+n+p\right)+x\left(m\left(a^2+b^2\right)+p\left(b^2+c^2\right)+n\left(c^2+a^2\right)\right)=0\)
Đến đây biện luận thôi ~~
Tớ làm hơi tắt đấy.
cho a,b,c là các tham số thỏa mãn điều kiện abc<0 . Giải bất phương trình :
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}>2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Mk chiu mk mới lớp 6 thui huhu
Nhưng chúc bn hok giỏi
Giải và biện luận theo tham số nghiệm các phương trình sau:
a) \(\frac{6b+7a}{6b}-\frac{3ax}{2b^2}=1-\frac{ax}{b^2-ab}\)(a,b là tham số)
b) \(7\left(m-1\right)x-2x+14=5m\)(m là tham số)
Cho biêt a là hằng số. giải các phương trình sau:
a) x(x+3) +a(a-3) =2(ax-1)
b) x^2+7x-a^2+a+12=0
Giải và biện luận các bất phương trình
a) \(\left(m-2\right)\ge\left(2m-1\right)x-3\)
b) \(\frac{ax+1}{a-1}>\frac{ax-1}{a+1}\) với a>1
a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)
Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.
Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)
Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)
Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]
Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)
Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))
b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)
\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)
Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)
Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)
2, Giải Phương trình:
a,\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
b,\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
( a,b,c là hằng số và đôi một khác nhau )