Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thiên Tuệ
Xem chi tiết
Dương Thiên Tuệ
11 tháng 12 2017 lúc 20:44

nhầm,\(\sqrt{4x^2+9x+2}\)

Kayoko
Xem chi tiết
Akai Haruma
26 tháng 6 2021 lúc 18:46

1. ĐKXĐ: $x\geq \frac{-3}{5}$

PT $\Leftrightarrow 5x+3=3-\sqrt{2}$

$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$

Akai Haruma
26 tháng 6 2021 lúc 18:47

2. ĐKXĐ: $x\geq \sqrt{7}$ 

PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$

$\Leftrightarrow x-49=4$

$\Leftrightarrow x=53$ (thỏa mãn)

 

Smile
26 tháng 6 2021 lúc 18:49

undefined

Lô Vỹ Vy Vy
Xem chi tiết
Ann
10 tháng 11 2017 lúc 16:31

\(x^2-2-2\sqrt{4x-7}=0\)

\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(4x^2-5x+1+2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)

\(\Rightarrow x=1\)

. . .

\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)

\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)

Đến đây lập bảng xét dấu

. . .

\(x^2-x+2=2\sqrt{x^2-x+1}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)

Tự làm tiếp nhé.

Ann
10 tháng 11 2017 lúc 16:59

\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)

\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)

\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)

\(\Rightarrow x=5\)

. . .

\(\sqrt{2x^2-4x+5}-x+4=0\)

\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)

\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)

\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)

\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)

\(\Leftrightarrow x^2+5x-6=1\)

Tự làm tiếp nhé.

. . .

\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)

Tự làm tiếp nhé.

Ann
10 tháng 11 2017 lúc 20:59

- Lô Vỹ Vy Vy Nếu câu hỏi liên quan đến hình học, thì mỗi lần đăng một câu thôi, nếu câu hỏi liên quan đến đại số và số học thì có thể đẳng 3 - 4 câu một lần. Lần sau đừng đăng dày đặc như thế này nữa.

Hà Giang
Xem chi tiết
Hồ Bảo Trâm
Xem chi tiết
Phạm Gia Hân
24 tháng 2 2019 lúc 16:28

Đây là toán 9 chứ

Miền Nguyễn
Xem chi tiết
Nhan Thanh
13 tháng 8 2021 lúc 20:28

ĐKXĐ: mọi \(x\)

Ta có \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

\(\Leftrightarrow\left(x+4\right)\sqrt{x^2+7}-x^2-4x-7=0\)

\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-x^2-4x+4x-7+16=0\) ( thêm bớt )

\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x+4\right)\dfrac{x^2-9}{\sqrt{x^2+7}+4}-\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(\dfrac{x+4}{\sqrt{x^2+7}+4}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\\dfrac{x+4}{\sqrt{x^2+7}+4}-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\dfrac{x+4}{\sqrt{x^2+7}+4}=1\left(\text{*}\right)\end{matrix}\right.\)

Giải (*), ta được phương trình

\(\left(\text{*}\right)\Leftrightarrow x+4=\sqrt{x^2+7}+4\)

\(\Leftrightarrow\sqrt{x^2+7}=x\)

\(\Leftrightarrow x^2+7=x^2\)

\(\Leftrightarrow7=0\) ( vô lý )

Suy ra phương trình (*) vô nghiệm 

Vậy \(S=\left\{\pm3\right\}\)

Nguyễn Võ Thảo Vy
Xem chi tiết
Song Nhi
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 2 2021 lúc 20:57

a, Ta có : \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2-y^2-x+y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=1\\\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=1\\\left(x-y\right)\left(x+y-1\right)=0\end{matrix}\right.\)

TH1 : \(x-y=0\Rightarrow x=y\)

- Thay vào PT ( I ) ta được : \(x^2+x^2=2x^2=1\)

\(\Rightarrow x=y=\dfrac{\sqrt{2}}{2}\)

TH2 : \(x+y-1=0\)

- Kết hợp PT ( I ) ta được hệ : \(\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)^2-2xy=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\-2xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm là \(S=\left\{\left(\dfrac{\sqrt{2}}{2};\dfrac{\sqrt{2}}{2}\right);\left(1;0\right);\left(0;1\right)\right\}\)

Nguyễn Việt Lâm
8 tháng 2 2021 lúc 21:47

b.

Đặt \(\sqrt{x^2+7}=t>0\)

\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)

\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+4+x-4}{2}=x\\t=\dfrac{x+4-x+4}{2}=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vô-nghiệm\right)\\x^2+7=16\end{matrix}\right.\)

\(\Rightarrow x=\pm3\)

Phùng Gia Bảo
Xem chi tiết