Cho hàm số y = f(x) có đạo hàm f ′(x)=(x2 −1)(x −4). Hàm số y = f(3− x) có bao nhiêu điểm cực đại
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = ( x 2 - 1 ) ( x - 4 ) với mọi x ∈ R . Hàm số g ( x ) = f ( 3 - x ) có bao nhiêu điểm cực đại?
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( 3 - x ) ( x 2 - 1 ) + 2 x , ∀ x ∈ R . Hỏi hàm số y = f ' ( x ) - x 2 - 1 có bao nhiêu điểm cực tiểu
A. 2
B. 3
C. 4
D. 1
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( x 2 - 1 ) ( x + 2 ) 3 , ∀ x ∈ ℝ . Hàm số có bao nhiêu điểm cực trị?
A. 3
B. 2
C. 5
D. 1
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x + 1 ) ( x 2 + 2 m x + 4 ) . Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = f ( x ) 2 có đúng một điểm cực trị.
A. 1.
B. 4.
C. 2.
D. 3.
Cho hàm số y=f(x) có đạo hàm f'(x)= x 2 ( x + 1 ) ( x 2 - m x + 16 ) . Có bao nhiêu số nguyên m<100 để hàm số y = f ( x 2 ) có 5 điểm cực trị.
A. 8.
B. 90.
C. 91.
D. 7.
Cho hàm số y = f(x) có đạo hàm f'(x) trên khoảng ( - ∞ ; + ∞ ) . Đồ thị hàm số y = f(x) như hình vẽ
Đồ thị của hàm số y = ( f ( x ) ) 2 có bao nhiêu điểm cực đại, cực tiểu?
A. 2 điểm cực đại, 3 điểm cực tiểu.
B. 1 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
A. 3 điểm cực đại, 2 điểm cực tiểu.
Cho hàm số y = f(x) có đạo hàm f ' ( x ) = x ( x 2 − 1 ) 2 ( x + 2 ) 3 . Khi đó số điểm cực trị của hàm số y = f x 2 là bao nhiêu?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y =f(x) có đạo hàm f’(x) trên khoảng (-∞;+∞). Đồ thị của hàm số y =f(x) như hình vẽ. Đồ thị của hàm số y = f x 2 có bao nhiêu điểm cực đại, điểm cực tiểu?
A. 1 điểm cực đại, 3 điểm cực tiểu.
B. 2 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
D. 2 điểm cực tiểu, 3 điểm cực đại.
Cho hàm số y = f (x) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) ( x 2 - 4 ) Số điểm cực trị của hàm số y = f(x) là:
A. 4
B. 1
C. 2
D. 3
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ a ; b . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau ?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' x 0 = 0
(2) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = f " x 0 = 0 thì điểm x 0 không là điểm cực trị của hàm số y = f x
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f(x)
(4) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = 0 , f " x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f(x)
A. 1
B. 2
C. 0
D. 3