Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh Thơ
Xem chi tiết
Lê Nhiên
Xem chi tiết
Dao Van Thinh
19 tháng 10 2020 lúc 12:14

sử dụng \((t+1/t)^2 = t^2 + 1/t^2 +2\)

Khách vãng lai đã xóa
Trần Anh Thơ
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2020 lúc 9:03

\(\frac{t^2}{2t^2+3}+\frac{2}{1+t}-\frac{34}{33}=\frac{-35t^3+97t^2-102t+96}{33\left(t+1\right)\left(2t^2+3\right)}=\frac{\left(2-t\right)\left(35t^2-27t+48\right)}{33\left(t+1\right)\left(2t^2+3\right)}\ge0\) \(\forall t\in\left[1;2\right]\)

\(\Rightarrow\frac{t^2}{2t^2+3}+\frac{2}{1+t}\ge\frac{34}{33}\)

Dấu "=" xảy ra khi \(t=2\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Vân Anh
Xem chi tiết
Thichinh Cao
Xem chi tiết
Nguyễn Xuân Tiến 24
25 tháng 11 2018 lúc 16:20

\(a^2+b^2+1\ge ab+a+b\Leftrightarrow2\left(a^2+b^2+1\right)-2\left(ab+a+b\right)\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi và chỉ khi a = b = 1

Trần Uyên
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2019 lúc 8:44

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Nguyễn Việt Lâm
23 tháng 3 2019 lúc 8:56

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

Nguyễn Việt Lâm
23 tháng 3 2019 lúc 8:58

Câu 5: Biến đổi tương đương:

\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab\right)^2+2abcd+\left(cd\right)^2\le\left(ab\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(cd\right)^2\)

\(\Leftrightarrow\left(ad\right)^2-2ad.bc+\left(bc\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)

Vậy ta có điều phải chứng minh

Ngu Ngu Ngu
Xem chi tiết
Bá đạo sever là tao
19 tháng 7 2017 lúc 12:33

có 1 cách mà xài SOS xấu lắm chơi ko :))

Thiên An
25 tháng 7 2017 lúc 9:53

tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách

Lê Minh Đức
25 tháng 7 2017 lúc 10:44

đây nhé có phải là

\(a-\frac{a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a^3+3abc-a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a\left(a-b\right)\left(a-c\right)}{a^2+3bc}+\frac{3abc}{a^2+3bc}\)

Đến khi cộng vào thì phải là \(3abc\left(\frac{1}{a^2+3bc}+\frac{1}{b^2+3ac}+\frac{1}{c^2+3ab}\right)\ge\frac{3abc.9}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)

CBSCB
Xem chi tiết
Ngọc Vĩ
3 tháng 8 2016 lúc 9:56

Đề chính xác k bạn

Vũ Trọng Nghĩa
4 tháng 8 2016 lúc 0:02

với x,y >0 ta có :   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)..\)

Áp dụng bất đẳng thức trên được: 

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\left(1\right).\)( vì abc = 1 ) 

Chứng minh tương tự ta được : \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\left(2\right).\)

                                                             \(\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\left(3\right).\)

Cộng vế với vế các BĐT (1), (2) và (3) ta được :

                                     \(P\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+1}\right)=\frac{3}{4}.\)( đpcm )

dấu " = " xẩy ra khi a = b = c = 1