Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
Chứng minh các BĐT sau:
a) Cho 1 ≤ t ≤ 2. CMR :\(\frac{t^2}{2t^2+3}+\frac{2}{1+t}\)≤ \(\frac{34}{33}\)
b,Cho x , y > 0 thỏa mãn x + y = 1 . Chứng minh rằng: 3(3 x - 2)2 +\(\frac{8x}{y}\) ≥ 7
c) Chứng minh rằng với mọi số thực dương a, b ta luôn có: \(\frac{a^2b}{2a^3+b^3}+\frac{2}{3}\) ≥ \(\frac{a^2+2ab}{2a^2+b^2}\)
Cho 1 ≤ t ≤ 2. Chứng minh rằng \(\frac{t^2}{2t^2+3}+\frac{2}{1+t}\) ≥ \(\frac{34}{33}\)
a) Cho 1 \(\le\) t \(\le\) 2. CMR \(\frac{t^2}{2t^2+3}+\frac{2}{1+t}\ge\frac{33}{34}\)
Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{a^2+2b+3}+\frac{1}{b^2+2c+3}+\frac{1}{c^2+2a+3}\le\frac{1}{2}\)
Bài 1: Cho a,b,c∈ R. Chứng minh các bất đẳng thức sau:
a) \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)
b) \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\) ; với a,b ≥ 0
c) a4+b4 ≥ a3b + ab3
d) a4+3 ≥ 4a
e) a3+b3+c3 ≥ 3abc ; với a,b,c > 0
f) \(a^4+b^4\le\frac{a^6}{b^2}+\frac{b^6}{a^2}\) ; với a,b ≠ 0
g) \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) ; với ab ≥ 1
h) (a5+b5)(a+b) ≥ (a4+b4)(a2+b2) ; với ab > 0
\(\lceil\) Chuyên đề \(\rfloor\): Bất đẳng thức hàng tuần. (Post 2)
1/ Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 3. Chứng minh:
\(a^2+b^2+c^2+3abc\ge6\)
2/ Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{a^2}{3a+b^2}+\frac{b^2}{3b+c^2}+\frac{c^2}{3c+a^2}\ge\frac{3}{4}\)
3/ Cho a, b, c là 3 cạnh của tam giác. Chứng minh rằng:
\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{27}\)
4/ Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\ge\sqrt{\frac{11\left(a^2+b^2+c^2\right)}{ab+bc+ca}+5}\)
5/ Cho a, b, c là số thực dương. Chứng minh:
\(\frac{a+b+c}{9\sqrt[3]{abc}}\ge\frac{a^2}{4a^2+5bc}+\frac{b^2}{4b^2+5ca}+\frac{c^2}{4c^2+5ab}\)
Xem TOPIC (Post 1) tại:Câu hỏi của tth - Toán lớp 8 | Học trực tuyến (vẫn nhận bài đến hết thứ 7 tuần này, ngày 25/4.)
TOPIC này thời gian nộp bài tương tự như trước (1 tuần, đến hết thứ Năm tuần sau, ngày 30/4)
Riêng bài \(5\) mong mọi người tìm những cách hay chứ đừng như cách em, nhìn là hết muốn đọc rồi :))
Dùng bất đẳng thức Schwarz chứng minh bất đẳng thức sau:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng:
\(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{c^2}}+\sqrt{2c^2+\frac{7}{a^2}}\) ≥ 9