Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết

a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)

\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)

Xét 2 biểu thức :

\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)

\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)

\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.

Dương Minh Trí
Xem chi tiết
Đỗ Thanh Nguyệt
4 tháng 11 2023 lúc 20:48

Ko hiểu ????

Anh Tran
4 tháng 11 2023 lúc 21:07

a)nếu 2n+1 và 3n+2 là các số  nguyên tố cùng nhau thì chúng phải có ƯCLN =1 

giả sử ƯCLN(2n+1,3n+2)=d

=>2n+1 chia hết cho d ,  3n+2 chia hết cho d 

=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d

=>6n+3 chia hết cho d, 6n +4 chia hết cho d

=>(6n+4)  - (6n+3) chia hết cho d

=>6n+4-6n-3=1 chia hết cho d

=>d=1

vậy ƯCLN(2n+1,3n+2)=1 (đpcm)

đpcm là điều phải chứng minh

Nguyễn Thị Minh Thanh
Xem chi tiết
ghost river
16 tháng 10 2017 lúc 20:33


Gọi ƯCLN(2n + 1 ; 5n + 2 ) = d
 2n + 1 \(\Rightarrow\)(2n + 1) = 10n + 4
 5n + 2\(\Rightarrow\)  2 (5n + 2) = 10n + 5

Xét hiệu ( 10n +5 ) - ( 10n + 4 ) = 10n - 10n +5 - 4 = 1
\(\Rightarrow\)\(⋮\)\(\Rightarrow\)d = 1
Vậy 2n + 1 và 5n + 2 là 2 số nguyên tố cùng nhau
 

ghost river
16 tháng 10 2017 lúc 20:37

Gọi ƯCLN(2n + 1 ; 5n + 2 ) = d
2n + 1 \(⋮\)\(\Rightarrow\)10n + 4\(⋮\)d                 ( 1 )
5n + 2 \(⋮\)\(\Rightarrow\)10n + 5  \(⋮\)d                ( 2 )
Từ (1) và (2) \(\Rightarrow\)(10n + 5) - ( 10n +4 ) = 10n - 10n + 5 - 4 = 1 \(⋮\)\(\Rightarrow\)d = 1
\(\Rightarrow\)2n + 1 và 5n + 2 là hai số nguyên tố cùng nhau.

phamducanh
16 tháng 10 2017 lúc 20:40

n={8}

GoKu Đại Chiến Super Man
Xem chi tiết
Hoàng Anh Tuấn
29 tháng 7 2015 lúc 21:01

gọi d là ước nguyên tố chung của 2n + 5 và 5n + 3 ( d thuộc N)

ta có : 2n + 5 : hết cho d và 5n + 3 : hết cho d

=> 5(2n+5) : hết cho d và 2( 5n + 3 ) : hết cho d

=> (10n + 25 ) - ( 10n + 6 ) : hết cho d

=> 19 : hết cho d

=> d = 19 , 1

vì 10n + 25 ko : hết cho 9

=> d = 1

=> dpcm

 

 

Vũ Ngô Quỳnh Anh
Xem chi tiết
soyeon_Tiểu bàng giải
14 tháng 7 2016 lúc 15:13

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

Boy 9xPronine
14 tháng 7 2016 lúc 15:36

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

Boy 9xPronine
14 tháng 7 2016 lúc 15:36

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

Phan Quang Minh
Xem chi tiết
Trình Tiến Đinh
Xem chi tiết
Lê Song Phương
2 tháng 1 2022 lúc 17:05

Đặt \(ƯCLN\left(2n+3,5n-2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\5n-2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(2n+3\right)⋮d\\2\left(5n-2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}10n+15⋮d\\10n-4⋮d\end{cases}}\)

\(\Rightarrow\left(10n+15\right)-\left(10n-4\right)⋮d\)\(\Rightarrow19⋮d\)

Vì \(d\inℕ^∗\)\(\Rightarrow d\in\left\{1;19\right\}\)??

Mà \(d\)lớn nhất nên \(d=19\)

Nếu như \(ƯCLN\left(2n+3,5n-2\right)=19\)thì \(2n+3\)và \(5n-2\)đâu nguyên tố cùng nhau??

Cho \(n=8\)thì \(2n+3=2.8+3=19\)và \(5n-2=5.8-2=38\)

19 và 38 không nguyên tố cùng nhau nên em xem lại đề bài nhé.

Khách vãng lai đã xóa
HEV_NTP
Xem chi tiết
HEV_NTP
29 tháng 8 2021 lúc 9:55

Giúp mình với mn

 

Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 9:59

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d

 

ILoveMath
29 tháng 8 2021 lúc 10:02

a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)

\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)

d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)

GoKu Đại Chiến Super Man
Xem chi tiết
Đặng Phương Thảo
28 tháng 7 2015 lúc 18:34

Gọi d > 0 là ước số chung của 7n+10 và 5n+7

=> d là ước số của 5.(7n+10) = 35n +50

và d là ước số của 7(5n+7)= 35n +49

mà (35n + 50) -(35n +49) =1

=> d là ước số của 1 => d = 1

Vậy _________________

    

 

 

Gọi d > 0 là ước số chung của 2n+3 và 4n + 8

=> d là ước số của 2(2n + 3) = 4n + 6

(4n + 8) - (4n + 6) = 2

=> d là ước số của 2 => d=1,2

d = 2 không là ước số của số lẻ 2n+3 => d = 1

Vậy __________________

hghjhjhjgjg
13 tháng 11 2016 lúc 18:40

kho qua

Dương Thị Minh Thư
13 tháng 12 2016 lúc 23:15

  Câu a : Giả sử : ƯCLN ( 7n + 10 ; 5n + 7 ) = 1

             => 7n + 10 chia hết cho d  => ( 7n + 10 ) . 5 chia hết cho d

             => 5n + 7 chia hết cho d  => ( 5n + 7 ) . 7 chia hết cho d

             => 35n + 50 chia hết cho d  => ( 35n + 50 ) - ( 35 + 49 ) = 1 chia hét cho d

                  35 + 49 chia hết cho d  => ( 35n + 49 ) - ( 35 + 50 ) = 1 chia hết cho d

           Vì 1 chia hết cho d và d thuộc N nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N 

             => ƯCLN ( 7n + 13 ; 2n + 14 ) = 1

          Vậy : 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau 

        Câu b : Giả sử : ƯCLN ( 2n +3 ; 4n + 8 ) = 1

             => 2n + 3 chia hết cho d  => ( 2n + 3 ) chia hết cho d 

                  4n + 8 chia hết cho d  => ( 4n + 8 ) . 2 chia hết cho d

             => 2n + 3 chia hết cho d  => ( 2n + 4 ) - ( 2n +3 ) = 1 chia hết cho d

             => 2n + 4 chia hết cho d  => ( 2 + 3 ) - ( 2n + 4 ) = 1 chia hết cho d

         Vì 1 chia hết cho d và d thuộc N  nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N 

            => ƯCLN ( 2n + 3 ; 4n + 8 ) = 1

                       Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau