A(1:4) B(3;-1) C(6;-2)
a) Viết PT đường thẳng qua A và tạo với trục tọa độ một tam giác cân với đỉnh là gốc tọa độ
b) Viết PT đường thẳng qua C và chia tam giác ABC thành 2 phần, phần chứa A có diện tích gấp đôi phần B
cho (a+1)(b+1)(c+1)=1 , (a+2)(b+2)(c+2)=2 , (a+3)(b+3)(c+3)=3 hỏi (a+4)(b+4)(c+4)=?
A. 1 - b, 2 - a, 3 - d, 4 - c.
B. 1 - b, 2 - d, 3 - a, 4 - c.
C. 1 - c, 2 - a, 3 - d, 4 - b.
D. 1 - c, 2 - b, 3 - d, 4 - a.
cho a,b,c > 0 , tm a +b +c = 1 . CM : \(a^4/(a^3 + b^3) + b^4/(b^3 + c^3 )+ c^4/(c^3 + a^3) >= 1/2\)
Câu 1: Các viết tập hợp nào sau đây đúng?
A. A = [1; 2; 3; 4]
B. A = (1; 2; 3; 4)
C. A = { 1, 2, 3, 4}
D. A = {1; 2; 3; 4}
Câu 2: Cho B = {a; b; c; d}. Chọn đáp án sai trong các đáp án sau?
A. a ∈ B B. b ∈ B C. e ∉ B D. g ∈ B
1C. A = { 1, 2, 3, 4} và D. A = {1; 2; 3; 4}.
Bài 10 : Xét sự thăng hàng của ba điểm A , B , C
1 / A ( −1 ; 1 ) , B ( 0 ; −1 ) , C ( 1 ; −3 )
2 / A ( 2 : 0 ) , B ( 5 : 1 ) , C ( -1 ; -1 )
3 / A ( 4 : 3 ) , B ( 2 : 0 ) .C ( 0 ; −3 )
4 / A ( −1 ; 2 ) , B ( 2 : 3 ) , C ( 4 : −1 )
Tính giá trị biểu thức
A= a .1/2+a .1/3-a .1/4 với a=-4/5
B=3/4 . b+4/3 .b-1/2 . b với b=6/19
A= a .1/2+a .1/3-a .1/4 với a=-4/5
A=a.(1/2+1/3-1/4)
A=-4/5.(6/12+4/12-3/12)
A=-4/5 . 7/12
A=\(\frac{-7}{15}\)
Cho a, b là những số thực dương. Rút gọn các biểu thức sau:
\(a)\ \dfrac{a^{\dfrac{4}{3}}(a^{\dfrac{-1}{3}}+a^{\dfrac{2}{3}})}{a^{\dfrac{1}{4}}(a^{\dfrac{3}{4}}+a^{\dfrac{-1}{4}})}\)
\(b)\ \dfrac{b^{\dfrac{1}{5}} (\sqrt[5]{b^4}-\sqrt[5]{b^{-1}})}{b^{\dfrac{2}{3}}(\sqrt[3]{b}-\sqrt[3]{b^{-2}})}\)
\(c)\ \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{-1}{3}}-a^{\dfrac{-1}{3}}b^{\dfrac{1}{3}}}
{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)
\(d)\ \dfrac{a^{\dfrac{1}{3}} \sqrt{b}+b^{\dfrac{1}{3}} \sqrt{a}}
{\sqrt[6]{a}+\sqrt[6]{b}}\)
a) = =
b) = = = . ( Với điều kiện b # 1)
c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).
d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =
a ) A = 1/4 + 1/4^2 +1/4^3 +.........+ 1/4^100 + 1/3.4^100
b) B = 1/3 - 1/3^2 + 1/3^3 - 1/3^4 +.........+ 1/ 3^99
a)Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+............+\dfrac{1}{4^{100}}\)
\(4A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+..........+\dfrac{1}{4^{99}}\)
\(4A-A=\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{99}}\right)-\left(\dfrac{1}{4}+\dfrac{1}{4^2}+.....+\dfrac{1}{4^{100}}\right)\)
\(3A=1-\dfrac{1}{4^{100}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{4^{100}}}{3}\)
~ Chúc bn học tốt ~
Nối cột A tương ứng với cột b
A. 1-b,2-a,3-d,4-c.
B. 1-a,2-b,3-c,4-d.
C. 1-d,2-c,3-b,4-a.
D. 1-d,2-a,3-c,4-b.
a,b,c>0 thỏa mãn `a^4 +b^4 +c^4 =3`. CMR \(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}>=\dfrac{3}{2}\)