Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bùi ngọc
Xem chi tiết
Trần Thu Hà
Xem chi tiết
sunny
Xem chi tiết
Đặng Hạnh
Xem chi tiết
Nguyễn Trương
Xem chi tiết
An Sơ Hạ
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2022 lúc 15:14

a: \(\text{Δ}=5^2-4\left(3m-1\right)=25-12m+4=-12m+29\)

Phương trình có hai nghiệm phân biệt khi -12m+29>0

=>-12m>-29

=>m<29/12

Để phương trình có nghiệm duy nhất thì -12m+29=0

=>m=29/12

Để phương trình vô nghiệm thì -12m+29<0

=>m>29/12

b: \(\text{Δ}=12^2-4\cdot2\cdot\left(-15m\right)=144+120m\)

Để phương trình có hai nghiệm pb thì 120m+144>0

=>m>-6/5

Để phương trình có nghiệm duy nhất thì 120m+144=0

=>m=-6/5

Để phương trình vô nghiệm thì 120m+144<0

=>m<-6/5

c: \(\text{Δ}=\left(2m-2\right)^2-4m^2=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì -8m+4>0

=>-8m>-4

=>m<1/2

Để pt có nghiệm duy nhất thì -8m+4=0

=>m=1/2

Để pt vô nghiệm thì -8m+4<0

=>m>1/2

Phương Anh Khổng
Xem chi tiết
Vy Vy
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2020 lúc 16:16

Để pt có 2 nghiệm âm pb \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta>0\\x_1+x_2< 0\\x_1x_2>0\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-3m+1>0\\x_1+x_2=2\left(m-1\right)< 0\\x_1x_2=3m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+2>0\\m< 1\\m>\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\frac{1}{3}< m< \frac{5-\sqrt{17}}{2}\)

b/ \(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)>0\\x_1+x_2=2-m< 0\\x_1x_2=m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m>0\\m< 2\\m>-1\end{matrix}\right.\) \(\Rightarrow-1< m< 0\)

c/ Giống phần b, chắc bạn ghi nhầm

Nguyễn Việt Lâm
7 tháng 5 2020 lúc 16:23

d/ \(\left\{{}\begin{matrix}\Delta=\left(m-3\right)^2+4\left(m+1\right)>0\\x_1+x_2=3-m< 0\\x_1x_2=-m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+13>0\left(luôn-đúng\right)\\m< 3\\m< -1\end{matrix}\right.\)

\(\Rightarrow m< -1\)

e/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)>0\\x_1+x_2=\frac{m-1}{2}< 0\\x_1x_2=\frac{m-1}{4}>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-6m+5>0\\m< 1\\m>1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

f/ \(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)>0\\x_1+x_2=\frac{2\left(2m-3\right)}{2-m}< 0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1< m< 3\\\left[{}\begin{matrix}m>2\\m< \frac{3}{2}\end{matrix}\right.\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1< m< \frac{6}{5}\\2< m< 3\end{matrix}\right.\)

Vy Vy
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2020 lúc 12:42

Để pt có 2 nghiệm cùng dấu: \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-m-1\ge0\\m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m\ge0\\m>-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\ge3\\-1< m\le0\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(2m-1\right)\ge0\\\frac{2m-1}{-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-12m+8\ge0\\m< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< \frac{1}{2}\)

c/ \(\left\{{}\begin{matrix}\Delta=m^2-4\left(m-\frac{3}{4}\right)\ge0\\m-\frac{3}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+3\ge0\\m>\frac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< m\le1\\m\ge3\end{matrix}\right.\)

Nguyễn Việt Lâm
7 tháng 5 2020 lúc 12:46

d/

\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\\frac{m}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \frac{1}{4}\\m>1\end{matrix}\right.\)

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)

f/

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)\ge0\\\frac{m-1}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge5\)

Nguyễn Việt Lâm
7 tháng 5 2020 lúc 12:51

g/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)\ge0\\m>2\end{matrix}\right.\)

\(\Rightarrow m\ge3\)

h/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1\le m< \frac{6}{5}\\2< m\le3\end{matrix}\right.\)

Vy Vy
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:36

Phương trình có hai nghiệm âm phân biệt hay dương phân biệt bạn?

Hay hai nghiệm trái dấu?