17. Cho đg thẳng đi qua 2 điểm A(3;-1) , B(0;3), tìm tọa độ điểm M thuộc Ox sao cho khoảng cách từ điểm M tới đg thẳng AB bằng 1
A (2;0)
B (4;0)
C (1;0) và (3,5;0)
D ( căn13;0)
Cho 10 điểm vẽ các đg thẳng đi qua 2 điểm trong 10 điểm đó tính số đg thẳng trong 10 điểm đã cho
A kon có 3 điểm nào thẳng hàng
B có đg 3 điểm thẳng hàng
14. Trong mặt phẳng toạ độ Oxy cho hai điểm A(3;-4), B(0;6). Viết pt tổng quát của đg thẳng AB.
16. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng d đi qua A(2;1) và song song và đg thẳng denta: 3x -2y +3=0.
17. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng d đi qua điểm I(4;-1) và vuông góc với đg thẳng denta : x+y-2017=0.
14.
\(\overrightarrow{AB}=\left(-3;10\right)\Rightarrow\) đường thẳng AB nhận \(\left(10;3\right)\) là 1 vtpt
Phương trình AB:
\(10\left(x-3\right)+3\left(y+4\right)=0\Leftrightarrow10x+3y-18=0\)
16.
Do d song song denta nên d nhận \(\left(3;-2\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-4=0\)
17. Cho d vuông góc denta nên d nhận \(\left(1;-1\right)\) là 1vtpt
Phương trình d:
\(1\left(x-4\right)-1\left(y+1\right)=0\Leftrightarrow x-y-5=0\)
Bài 8: Cho 3 điểm phân biệt A,B,C. Có thể kẻ đc baonhiu đg thẳng đi qua từng cặp hai trog ba điểm ấy??
Bài 9: Hãy vẽ 5 điểm phân biệt và kẻ các đg thẳng đi qua từng cặp hai trog năm điểm ấy, trong các TH sau:
a) Có 1 đg thẳng
b) Có 5 đg thẳng
c) Có 8 đg thẳng
d) Có 10 đg thẳng
e) Có 6 đg thẳng
Bài 10: Cho 6 điểm phân biệt, trog đó ko có bất kì 3 điểm nào thẳng hàng. Có thể kẻ đc baonhiu đg thẳng ik qua từng cặp 2 trong 6 điểm ấy?
Bài 11: Cho n điểm phân biệt , trog đó ko có bất kì 3 điểm nào thẳng hàng. Có thể kẻ đc baonhiu đg thẳng ik qua từng cặp 2 trong n điểm ấy?
Bài 12: Cho 3 đg thẳng a,b,c. Tìm số giao điểm của 3 đg thẳng ấy
Bài 13: Cho 5 đg thẳng trog đó ko có 2 đg thẳng nào sog sog và ko có 3 đg thẳng nào đồng quy. Tìm số giao điểm của các đg thẳng ấy
Bài 14: Cho n đg thẳng trog đó ko có 2 đg thẳng nào sog sog và ko có 3 đg thẳng nào đồng quy. Tìm số giao điểm của các đg thẳng ấy
Bài 15*: Vẽ hình trog các TH sau:
a) Có 4 đg thẳng a,b,c,d và 6 điểm A,B,C,D,E,F sao cho mỗi đg thẳng chứa 3 điểm đã cho
b) Có 7 điểm A,B,C,D,E,F,G và 6 đg thẳng sao cho mỗi đg thẳng chứa 3 điểm
c) Có 10 điểm và 5 đg thẳng, sao cho mỗi đg thẳng chứa 4 điểm đã cho
Help me!!
Huhu! Bà có khác gì tui đâu!
I don't know!
1. cho trc 4 điểm, vẽ các đg thẳng đi qua các cặp điểm
a)nếu trong 4 điểm đó ko cs 3 điểm nào thẳng hàng thì sẽ vẽ đc bao nhiêu đg thẳng?
b)nếu trong 4 điểm có đúng 3 đg thẳng thẳng hàng thì sẽ vẽ đc bao nhiêu đg thẳng?
2.cho trc n điểm (n thuộc N, n lớn hơn hoặc bằng 2). vẽ các đoạn thẳng đi qua các cặp điểm đc tất cả 28 đoạn thẳng. tìm n
9. Cho đg thẳng (d) x -2y +1=0. Nếu đg thẳng (denta) đi qua M(1;-1) và song song vs (d) thì (denta) có pt?
10. Cho 3 điểm A(1;-2), B(5;-4) , C(-1;4). Đg cao AA' của tg ABC có pt?
18. Viết pt đg thẳng đi qua điểm M(2;-3) và cắt hai trục toạ độ tại hai điểm A và B sao cho tg OAB vuông cân.
9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)
\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)
\(\left(d\right):x-2y-3=0\)
10/ \(\overrightarrow{BC}=\left(-6;8\right)\)
PT đường cao AA' nhận vecto BC làm vtpt
\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)
\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)
\(AA'=-6x+8y+22=0\)
18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)
Để mình chứng minh lại:
Đường thẳng có dạng : y= ax+b
\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)
Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)
Vì khoảng cách từ O đến từng điểm là như nhau
\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)
(3)
viết pt đg thẳng (d) thỏa mãn
a) đi qua 2 điểm A(-1; 2) vafB(2; 1)
b) đi qua gốc tọa độ và có hệ số góc =3
c) đi qua điểm B (2; 1) và song song vs đg thẳng y=-2x+3
d) đi qua điểm M (2; -1) và cắt trục tung tại điểm có tung độ = 3
e) cắt (P) \(y=x^2\)tại 2 điểm có hoành độ lần lượt là -1 và 2
giúp mk vs mk cần gấp
a: Vì (d) đi qua A(-1;2) và B(2;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=1\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=a+2=\dfrac{5}{3}\end{matrix}\right.\)
b: Vì (d) có hệ số góc là 3 nên a=3
hay (d): y=3x+b
Thay x=0 và y=0 vào (d), ta được:
b+0=0
hay b=0
c: Vì (d)//y=-2x+3 nên a=-2
Vậy: (d): y=-2x+b
Thay x=2 và y=1 vào (d), ta được:
b-4=1
hay b=5
cho 2 đg thẳng a,b. trên a lấy 2 điểm A,B; trên b lấy 3 điểm C,D,E. Kẻ đg thẳng qua cặp điểm. Kể tên đg thẳng
cho n đg thẳng trong đó bất cứ hai đg thẳng nào cx cắt nhau ,ko có 3 đg thẳng nào cùng đi qua 1 điểm .Biết rằng số giao điểm của các đg thẳng đó là 780.tính n?
Theođề, ta có: n(n+1)/2=780
=>n(n+1)=1560
=>n^2+n-1560=0
=>n=39
Cho hình vuông ABCD. O là giao điểm 2 đg chéo. M là trung điểm của OB.CM đg thẳng đi qua M và vuông góc với AM sẽ đi qua trung điểm N của CD