Cho ΔABC có B̂ = Ĉ = 50 độ. Tia phân giác của  cắt BC tại D.
Chứng minh rằng: AD ⊥ BC
cho tam giác abc và ab=ac tia phân giác  cắt bc tại d.chứng minh ad vuông góc bc
Xét ΔABC có: AB=AC
=> ΔABC cân tại A
Mà AD là tia phân giác \(\widehat{A}\)nên AD đồng thời là đường cao của ΔABC (tính chất)
=> AD vuông góc với BC
Cho ΔABC có góc B < 60 độ ; tia phân giác AD
a) chứng minh rằng : BD<AB
b) Cho tia phân giác của góc DAC cắt BC tại M . Chứng minh rằng : 4AM<BC
Cho tam giác ABC cân tại A, góc A = 36 độ. Vẽ tia phân giác của góc B cắt AC tại D.Chứng minh rằng AD = BC
Cho ΔABC có AB = AC, tia phân giác của góc BAC cắt BC tại D.
1) Chứng minh rằng: AD ⊥ BC .
2) Lấy điểm E thuộc AB, điểm F thuộc AC, sao cho BE = CF. Chứng minh DA là tia phân giác của góc EDF.
1: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
2: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC và AB=AC
nên AE=AF
Xét ΔEAD và ΔFAD có
AE=AF
\(\widehat{EAD}=\widehat{FAD}\)
AD chung
Do đó: ΔEAD=ΔFAD
=>\(\widehat{EDA}=\widehat{FDA}\)
=>DA là phân giác của góc EDF
Lời giải:
1. Xét tam giác $ABD$ và $ACD$ có:
$AB=AC$
$\widehat{BAD}=\widehat{CAD}$ (do $AD$ là tia phân giác $\widehat{BAC}$)
$AD$ chung
$\Rightarrow \triangle BAD=\triangle CAD$ (c.g.c)
$\Rightarrow \widehat{ADB}=\widehat{ADC}$
Mà $\widehat{ADB}+\widehat{ADC}=180^0$
$\Rightarrow \widehat{ADB}=\widehat{ADC}=180^0:2=90^0$
$\Rightarrow AD\perp BC$
2.
$AB=AC$
$BE=CF$
$\Rightarrow AB-BE=AC-CF$ hay $AE=AF$
Xét tam giác $AED$ và $AFD$ có:
$AD$ chung
$AE=AF$
$\widehat{EAD}=\widehat{FAD}$
$\Rightarrow \triangle AED=\triangle AFD$ (c.g.c)
$\Rightarrow \widehat{EDA}=\widehat{FDA}$
$\Rightarrow DA$ là tia phân giác $\widehat{EDF}$
Cho tam giác ABC có  =120o . Tia phân giác của  cắt BC tại D. Tia phân giác của ADC ̂ cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đường thẳng AB, BC, AD. Chứng minh: a) AC là tia phân giác của DAH ̂ b) IH = IE = IK
Cho ΔABC có góc B=50 độ. Trên nửa mặt phẳng chứa C có bở là đường thẳng AB, vẽ tia Ax sao cho góc BAx= 130 độ. Tia phân giác của góc BAx cắt đường thẳng BC tại D. Trên nửa mặt phẳng không chứa Ccos bờ là đường thẳng AB vẽ tia By sao cho góc CBy=CDA. . Tia By cắt tia đối của tia Ax tại E. Tia phân giác của BAE cắt BE tại F. Qua B vẽ đường vuong góc với AD cắt Ax tại I. chứng minh rằng:
a)góc ABE=AEB
b)Tổng số đo các góc của ΔABC=180 độ
c) AF vuông góc với BE
Cho ΔABC có gó B=50 đọ. Trên nửa mặt phẳng chứa bờ C có bở là đường thẳng AB, vẽ tia à sao cho goc BAx= 130 độ. Tia phân giác của góc BAx cắt đường thẳng BC tại D. Trên nửa mặt phẳng không chứa Ccos bờ là đường thẳng AB vẽ tia By sao cho góc CBy=CDA. . Tia By cắt tia đốicủa tia à tại E. Tia phân giác của BAE cắt BE tại F. Qua B vẽ đường vuong góc với AD cắt Ax tại I. chứng minh rằng:
a)góc ABE=AEB
b)Tổng số đo các góc của ΔABC=180 độ
c) AF vuông góc với BE
d) ABI=AIB
Cho ΔABC có gó B=50 đọ. Trên nửa mặt phẳng chứa bờ C có bở là đường thẳng AB, vẽ tia à sao cho goc BAx= 130 độ. Tia phân giác của góc BAx cắt đường thẳng BC tại D. Trên nửa mặt phẳng không chứa Ccos bờ là đường thẳng AB vẽ tia By sao cho góc CBy=CDA. . Tia By cắt tia đốicủa tia à tại E. Tia phân giác của BAE cắt BE tại F. Qua B vẽ đường vuong góc với AD cắt Ax tại I. chứng minh rằng:
a)góc ABE=AEB
b)Tổng số đo các góc của ΔABC=180 độ
c) AF vuông góc với BE
d) ABI=AIB
Cho ΔABC có gó B=50 đọ. Trên nửa mặt phẳng chứa bờ C có bở là đường thẳng AB, vẽ tia à sao cho goc BAx= 130 độ. Tia phân giác của góc BAx cắt đường thẳng BC tại D. Trên nửa mặt phẳng không chứa Ccos bờ là đường thẳng AB vẽ tia By sao cho góc CBy=CDA. . Tia By cắt tia đốicủa tia à tại E. Tia phân giác của BAE cắt BE tại F. Qua B vẽ đường vuong góc với AD cắt Ax tại I. chứng minh rằng:
a)góc ABE=AEB
b)Tổng số đo các góc của ΔABC=180 độ
c) AF vuông góc với BE
d) ABI=AIB