a) Cho 1 \(\le\) t \(\le\) 2. CMR \(\frac{t^2}{2t^2+3}+\frac{2}{1+t}\ge\frac{33}{34}\)
Cho 1 ≤ t ≤ 2. Chứng minh rằng \(\frac{t^2}{2t^2+3}+\frac{2}{1+t}\) ≥ \(\frac{34}{33}\)
\(\frac{t^2}{2t^2+3}+\frac{2}{1+t}-\frac{34}{33}=\frac{-35t^3+97t^2-102t+96}{33\left(t+1\right)\left(2t^2+3\right)}=\frac{\left(2-t\right)\left(35t^2-27t+48\right)}{33\left(t+1\right)\left(2t^2+3\right)}\ge0\) \(\forall t\in\left[1;2\right]\)
\(\Rightarrow\frac{t^2}{2t^2+3}+\frac{2}{1+t}\ge\frac{34}{33}\)
Dấu "=" xảy ra khi \(t=2\)
Chứng minh các bất đẳng thức sau bằng cách biến đổi tương đương:
a) Cho 1\(\le t\le\) 2. CMR: \(\frac{t^2}{2.t^2+3}+\frac{2}{1+t}\ge\frac{34}{33}\)
b) Chứng minh với mọi số duong a, b ta luôn có \(\frac{a^2b}{2a^3+b^3}+\frac{2}{3}\ge\frac{a^2+2ab}{2a^2+b^2}\)
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
Chứng minh các BĐT sau:
a) Cho 1 ≤ t ≤ 2. CMR :\(\frac{t^2}{2t^2+3}+\frac{2}{1+t}\)≤ \(\frac{34}{33}\)
b,Cho x , y > 0 thỏa mãn x + y = 1 . Chứng minh rằng: 3(3 x - 2)2 +\(\frac{8x}{y}\) ≥ 7
c) Chứng minh rằng với mọi số thực dương a, b ta luôn có: \(\frac{a^2b}{2a^3+b^3}+\frac{2}{3}\) ≥ \(\frac{a^2+2ab}{2a^2+b^2}\)
Cho x, y t/m \(\hept{\begin{cases}\text{x, y }\varepsilon R\\0\le x;y\le\frac{1}{2}\end{cases}}\). CMR: \(\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}\le\frac{2\sqrt{2}}{3}\)
a)Cho hai số không âm x, y thỏa x,y \(\le\)1.CMR:
\(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)
b) Cho x,y,z,t thỏa 0\(\le x\le y\le z\le t\)và yt\(\le\)1.Chưng minh rằng:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{4}{1+\sqrt[4]{xyzt}}\)
a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)
\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)
\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)
\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)
b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)
Áp dụng câu a ta được
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)
Cho x, y t/m \(\hept{\begin{cases}\text{x, y }\varepsilon R\\0\le x;y\le\frac{1}{2}\end{cases}}\). CMR: \(\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}\le\frac{2\sqrt{2}}{3}\)
Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-x\right)\left(\frac{1}{\sqrt{2}}-y\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)
Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)
Từ (1)(2)(3) và (4) ta có:
\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)
\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)
=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
1. tìm max, min : a) \(B=\frac{x-y}{x^4+y^4+6}\)
b) \(C=\frac{2x+3y}{2x+y+3}\) với \(4x^2+y^2=1\)
c) \(P=\frac{x+y}{x^2-xy+y^2}\) với \(1\le x,y\le2\)
2. Cho biểu thức \(A=\frac{a^3+b^3+c^3}{abc}\) với \(1\le a\le b\le c\le2\)
a) Cmr: \(A\le\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}\) b) Tìm Max A
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ
Đừng tag níc phụ này.
Mà cái câu 2a) bên dưới gì đó ko có đk gì của a, b, c sao giải đc?
a)Cho các số x,y,z \(\ge\)1.CMR: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\).
b) Cho x,y,z \(\ge\)0 và x\(\le1;y\le1;z\le1\)chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
c)Cho a + b\(\ge\)2.CMR: \(a^3+b^3\le a^4+b^4\)
d)Cho a2+b2\(\ge\frac{1}{4}.CMR:a^4+b^4\ge\frac{1}{32}\)
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
vì \(x,y,z\in\left[0;1\right]\)nên \(x^2\ge x^3;y^2\ge y^3;z^2\ge z^3\)
\(VT\le\frac{1}{1+x^3}+\frac{1}{1+y^3}+\frac{1}{1+z^3}\le\frac{3}{1+xyz}\)đúng theo BĐT câu a vì \(x,y,z\le1\)nên BĐT đổi chiều
Dấu = xảy ra:(x,y,z)=(0;0;0);(1;1;1) ;(1;0;1);(0;1;1);(1;1;0)
Cho a,b,c t/m : a^2 +b^2+c^2=1.CMR:
\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ac}\le\frac{9}{2}\)
Minh nhap dung con gi ai giai giup minh voi