Cho ΔABC. Gọi M, N, K lần lượt là 3 điểm bất kì thuộc 3 cạnh của tam giác (không trùng với đỉnh). Chứng minh chu vi ΔMNK bé hơn chi vi ΔABC.
Cho ΔABC. Gọi M, N, K lần lượt là 3 điểm bất kì thuộc 3 cạnh của tam giác (không trùng với đỉnh). Chứng minh chu vi ΔMNK bé hơn chu vi ΔABC.
Cho tam giác ABC và một điểm O nằm trong tam giác đó. Gọi P, Q, R lần lượt là trung điểm của các đoạn thẳng OA, OB, OC.
a) Chứng minh Δ P Q R ∽ Δ A B C .
b) Cho biết Δ A B C có chu vi bằng 543cm, hãy tính chu vi Δ P Q R .
Câu 4: Cho ΔABC, điểm O ở bên trong tam giác. Gọi theo thứ tự là trung điểm của OA, OB, OC.
a) Chứng minh rằng ΔABC đồng dạng với ΔMNP.
b) Tính chu vi của ΔMNP biết chu vi của ΔABC bằng 88cm.
Câu 4: Cho ΔABC, điểm O ở bên trong tam giác. Gọi theo thứ tự là trung điểm của OA, OB, OC.
a) Chứng minh rằng ΔABC đồng dạng với ΔMNP.
b) Tính chu vi của ΔMNP biết chu vi của ΔABC bằng 88cm.
Câu 4: Cho ΔABC, điểm O ở bên trong tam giác. Gọi theo thứ tự là trung điểm của OA, OB, OC.
a) Chứng minh rằng ΔABC đồng dạng với ΔMNP.
b) Tính chu vi của ΔMNP biết chu vi của ΔABC bằng 88cm.
Cho điểm O nằm trong ΔABC. Gọi P, Q, R lần lượt là trung điểm của các đoạn thẳng OA, OB, OC.
a. Chứng minh: ΔPQR đồng dạng ΔABC b. Tính chu vi ΔPQR, biết chu vi ΔABC bằng 540 cm.
a. Xét △OAB có:
Q là trung điểm OB, P là trung điểm OA (gt).
\(\Rightarrow\) PQ là đường trung bình của △OAB.
\(\Rightarrow PQ=\dfrac{1}{2}AB\)
\(\Rightarrow\dfrac{PQ}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)
-Tương tự: \(\dfrac{QR}{BC}=\dfrac{1}{2};\dfrac{PR}{AC}=\dfrac{1}{2}\)
-Xét △PQR và △ABC có:
\(\dfrac{PQ}{AB}=\dfrac{QR}{BC}=\dfrac{PR}{AC}\left(=\dfrac{1}{2}\right)\)
\(\Rightarrow\)△PQR ∼ △ABC (c-c-c).
b. Ta có: △PQR ∼ △ABC (cmt).
\(\Rightarrow\dfrac{S_{PQR}}{S_{ABC}}=\left(\dfrac{PQ}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{PQR}=\dfrac{1}{2}S_{ABC}=\dfrac{1}{2}.540=270\left(cm^2\right)\)
cho tam giác ABC. lần lượt gọi M,N,P là trung điểm của 3 cạnh AB, AC , BC. Gọi I là giao điểm của AP và MN
a) chứng minh IA=IP
b) chứng minh IM=IN
c) biết chu vi tam giác ABC là 54cm. tính chu vi tam giác MNP
a,xét tam giác ABC có MA=MB
NA=NC
Nên MN // BC Hay MI // BP; NI //PC
Xét tam giác ABP có MI // BP; NA=NB Nên MI sẽ đi qua trung điểm AP hay AI=IP(T/C đường trung bình của tam giác)
b, ta có IM là đường trung bình của tam giác ABP (theo CM trên )
\(\Rightarrow MI=\frac{1}{2}BP\)(1)
ta có IN là đường trung bình của tam giác APC (vì AN=AC; IN//PC)
\(\Rightarrow IN=\frac{1}{2}BC\) (2)
Mà BP=PC ( do p là trung điểm của BC)
từ (1);(2);(3) suy ra MI=IN
c, ta có PABC=AB+BC+AC=54 (cm) (P là chu vi bạn nhé)
ta có NP =\(\frac{1}{2}AB\)do NA=NC;PC=PB nên NP là đường trung bình của tam giác ABC
tương tự ta có \(MN=\frac{1}{2}BC\)và \(MP=\frac{1}{2}AC\)
mặt khác PMNP=MN+NP+MP=\(\frac{1}{2}BC+\frac{1}{2}AB+\frac{1}{2}AC\)=\(\frac{1}{2}\left(BC+AB+AC\right)\)=\(\frac{1}{2}.54=27\)
Vậy chu vi tam giác MNP là 27cm
1)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC.
2) Tam giác ABC có AB<AC. Gọi d là đường trung trực của BC, E là giao điểm của d với AC. Gọi K là một điểm bất kì thuộc d (K khác E). So sánh chu vi các tam giác AKB và AEB.
3) Cho điểm A nằm trong góc nhọn xOy. Vẽ điểm D đối xứng với A qua Ox. Vẽ điểm E đối xứng với A qua Oy. Gọi B và C theo thứ tự là giao điểm của DE với Ox và Oy. Chứng minh rằng tam giác ABC có chu vi nhỏ nhất trong các tam giác có một đỉnh là A, hai đỉnh kia nằm trên các tia Ox và Oy.
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC
Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.
Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.
Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.
Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).
Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh
MN< hoặc = (AC+BD)/2
Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.