Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Nguyễn
Xem chi tiết
๖Fly༉Donutღღ
1 tháng 3 2018 lúc 20:06

Hình tự vẽ lấy nhé

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

\(\Rightarrow\frac{DB}{DB+DC}=\frac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\Rightarrow\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}\left(cm\right)\)

b) Kẻ \(AH\perp BC\)

Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)

\(S_{ACD}=\frac{1}{2}AH.CD\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.CD}=\frac{BD}{DC}\)

Mà \(\frac{DB}{DC}=\frac{15}{12}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{3}{4}\left(đpcm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2019 lúc 10:12

Trong △ ABC, ta có: AD là đường phân giác của (BAC)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất tỉ lệ thức)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

nguyen thi mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 8 2022 lúc 21:23

Bài 1:

Xét ΔABC có AD là phân giác

nen AB/BD=AC/CD

=>AB/3=AC/4

Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=35^2\)

=>k2=49

=>k=7

=>AB=21cm; AC=28cm

NO PRO
Xem chi tiết
NO PRO
27 tháng 3 2022 lúc 16:54

ai giúp mình lẹ nha nhanh mình tick nhé

NO PRO
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2022 lúc 10:21

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

NO PRO
Xem chi tiết
Cao Minh
28 tháng 3 2022 lúc 7:31

undefined

a) Vì AB//CE (gt) 

=> BAD = CED (so le trong)

Xét tam giác ABD và tam giác ECD có 

BAD = CED (cmt)

ADB = EDC (đối đỉnh)

=> Tam giác ABD đồng dạng với tam giác ECD 

b) Đặt BD là x, ta có: 

CD = BC - BD = 15 - x

Xét tam giác ABC có AD là đường phân giác (gt) nên

=> BD/DC = AB/AC (Tính chất đường phân giác trong tam giác)

Thay số: x/15 - x = 8/12

=> 12x = 8(15 - x)

(=) 12x = 120 - 8x

(=) 20x = 120

(=) x = 6 

=> BD = 6

=> CD = BC - BD = 15 - 6 = 9 cm 

 

NO PRO
Xem chi tiết
NO PRO
27 tháng 3 2022 lúc 22:10

giúp mình vs

 

NO PRO
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2022 lúc 10:21

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

NO PRO
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2022 lúc 10:21

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm