hãy so sánh cạnh của tam giác DEF biết rằng D=50độ và E=30 độ
Bài 31: Cho DABC có AB = 2cm, AC = 5cm, BC = 6cm. So sánh các góc của tam giác ABC.
Bài 32: Cho tam giác DEF có góc E=80, F=30. So sánh các cạnh của ∆DEF.
Bài 33: Trong các bộ ba đoạn thẳng có độ dài sau đây, bộ ba nào là ba cạnh của một tam giác?
a) 4cm; 5cm; 11cm
b) 5dm; 2dm; 7dm
c) 6m; 3m; 5m
Bài 34: Cho tam giác cân có độ dài hai cạnh là 6 cm và 13 cm. Tính độ dài cạnh còn lại và chu vi của tam giác cân đó.
Bài 35: Cho DABC vuông tại A, có AM là đường trung tuyến, biết AB = 6cm, AC = 8cm.
a) Tính AM.
b) Gọi G là trọng tâm của DABC. Tính AG.
Bài 36: Cho tam giác ABC, kẻ AH vuông góc với BC (H Î BC). Biết AC = 20cm; AH = 12cm; BH = 5cm. Tính độ dài HC, AB, BC?
Bài 37: Cho tam giác ABC có góc A=80, góc B=30
a) So sánh các cạnh của tam giác ABC.
b) Vẽ AH vuông góc với BC tại H. So sánh HB và HC
Bài 38: Cho góc nhọn xOy, Ot là tia phân giác của góc xOy, điểm H nằm trên tia Ot. Từ H kẻ HA vuông góc với Ox và HB vuông góc với Oy (A thuộc Ox, B thuộc Oy).
a) Chứng minh tam giác HAB là tam giác cân.
b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH.
Chứng minh BC vuông góc với Ox.
c) Khi góc xOy bằng 600, chứng minh OA = 2OD.
Bài 39: Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K. Chứng minh:
a) Tam giác BNC = Tam giác CMB
b) Tam giác BKC cân tại K
c) BC < 4.KM
Bài 40: Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a) BD là đường trung trực của AE
b) DF = DC
c) AD < DC
d) AE // FC
Bài 40:
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
c: Ta có: AD=DE
mà DE<DC
nên AD<DC
d: Ta có: ΔADF=ΔEDC
nên AF=EC
Xét ΔBFC có
\(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
Do đó: AE//CF
Cho tam giác DEF có: \(12\widehat{D}=10\widehat{E}=15\widehat{F}\)
a, So sánh các cạnh của tam giác DEF
b, Phân giác của góc E cắt DF tại M. So sánh DM và FM
a/ Ta có \(12\widehat{D}=15\widehat{F}\)
=> \(4\widehat{D}=5\widehat{F}\)
=> \(\widehat{D}=\frac{5}{4}\widehat{F}\)
=> \(\widehat{D}>\widehat{F}\)(1)
và \(10\widehat{E}=15\widehat{F}\)
=> \(2\widehat{E}=3\widehat{F}\)
=> \(\widehat{E}=\frac{3}{2}\widehat{F}\)
=> \(\widehat{E}>\widehat{F}\)(2)
Từ (1) và (2) => \(\widehat{D}>\widehat{E}>\widehat{F}\)
=> EF > DF > DE (quan hệ giữa góc và cạnh đối diện trong tam giác)
Cho tam giác DEF vuông tại D có DE=5cm và DF=12cm. a)So sánh góc E và góc F của tam giác. b) Gọi M là trung điểm của cạnh EF.Tính độ dài đoạn thẳng DM. GIÚP TỚ VỚI.!
a) Có DE < DF( 5cm < 12cm)
->góc F< góc E
b) áp dụng đl pytago:
EF^2=DE^2+DF^2=5^2+12^2=169
= > EF=13 (cm)
tam giác DEF có DM là trung tuyến(M là trung điểm của EF) ứng với cạnh huyền
=> DM=EM=MF=EF/2=13/2=6,5cm
Cho tam giác DEF vuông tại D có góc F bằng 55 độ
a) Tính góc E . So sánh các cạnh của tam giác DEF?
b) Vẽ phân giác EH của tam giác DEF . Lấy điểm K trên cạnh EF sao cho DE = EK . Chứng minh tam giác EDH = tam giác EKH và DKH cân
c) Vẽ một đường thẩng a bất kì đi qua D .Trên cạnh DE lấy điểm I sao cho DF = DI . Kẻ FN và IM vuông góc với đường thẳng a . Chứng minh FN mũ 2 + IM mũ 2 = IF mũ 2 - ID mũ 2
Giusp em câu c thôi ạ
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
Cho tam giác DEF có góc D=30 độ;góc E=1/2 góc F.So sánh các cạch của DEF
Cho tam giác ABC,biết A^+B^=120 độ,A^-B^=30 độ
a) So sánh các cạnh của tam giác
b)Tia phân giác của góc A cắt BC ở D .So sánh độ dài đoạn BD và CD
Cho tam giác DEF có góc D=30 độ;góc E=1/2 góc F.So sánh các cạch của DEF.Góc E,F bao nhiêu độ
Xét ΔDEF có
\(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{E}+\widehat{F}=150^0\)
\(\Leftrightarrow\dfrac{1}{2}\cdot\widehat{F}+\widehat{F}=150^0\)
\(\Leftrightarrow\dfrac{3}{2}\cdot\widehat{F}=150^0\)
hay \(\widehat{F}=100^0\)
Vì \(\widehat{E}+\widehat{F}=150^0\)
nên \(\widehat{E}+100^0=150^0\)
hay \(\widehat{E}=50^0\)
Vậy: \(\widehat{F}=100^0\); \(\widehat{E}=50^0\)
cho tam giác DEF cân tại E có ED=EF=17 cm, DF=16cm. Kẻ đường trung tuyến EH
a/ chứng minh rằng tam giác EDH= tam giác EFH và chỉ ra EH vuông góc với DF
b/ tính độ dài EH
c/hãy so sánh các góc của tam giác EHF
cho tam giác ABC vuông ở A , các tia phân giác BM và CN cắt nhau tại I .gọi DEF là hình chiếu của đỉnh I xuống các cạnh AB, BC , AC.
a, so sánh AN và BN , AM và CM .
b, CMR AD = AE .
c , tính độ dài các đoạn AD và AE biết AB = 8 cm ,AC = 15 cm.
d, trong trường hợp tam giác ABC cân tại A , hãy chứng minh tam giác DEF cân