DE>EF>FD (cạnh đối diện với góc lớn hơn thì lớn hơn)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
DE>EF>FD (cạnh đối diện với góc lớn hơn thì lớn hơn)
Bài 31: Cho DABC có AB = 2cm, AC = 5cm, BC = 6cm. So sánh các góc của tam giác ABC.
Bài 32: Cho tam giác DEF có góc E=80, F=30. So sánh các cạnh của ∆DEF.
Bài 33: Trong các bộ ba đoạn thẳng có độ dài sau đây, bộ ba nào là ba cạnh của một tam giác?
a) 4cm; 5cm; 11cm
b) 5dm; 2dm; 7dm
c) 6m; 3m; 5m
Bài 34: Cho tam giác cân có độ dài hai cạnh là 6 cm và 13 cm. Tính độ dài cạnh còn lại và chu vi của tam giác cân đó.
Bài 35: Cho DABC vuông tại A, có AM là đường trung tuyến, biết AB = 6cm, AC = 8cm.
a) Tính AM.
b) Gọi G là trọng tâm của DABC. Tính AG.
Bài 36: Cho tam giác ABC, kẻ AH vuông góc với BC (H Î BC). Biết AC = 20cm; AH = 12cm; BH = 5cm. Tính độ dài HC, AB, BC?
Bài 37: Cho tam giác ABC có góc A=80, góc B=30
a) So sánh các cạnh của tam giác ABC.
b) Vẽ AH vuông góc với BC tại H. So sánh HB và HC
Bài 38: Cho góc nhọn xOy, Ot là tia phân giác của góc xOy, điểm H nằm trên tia Ot. Từ H kẻ HA vuông góc với Ox và HB vuông góc với Oy (A thuộc Ox, B thuộc Oy).
a) Chứng minh tam giác HAB là tam giác cân.
b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH.
Chứng minh BC vuông góc với Ox.
c) Khi góc xOy bằng 600, chứng minh OA = 2OD.
Bài 39: Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K. Chứng minh:
a) Tam giác BNC = Tam giác CMB
b) Tam giác BKC cân tại K
c) BC < 4.KM
Bài 40: Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a) BD là đường trung trực của AE
b) DF = DC
c) AD < DC
d) AE // FC
Cho tam giác DEF có: \(12\widehat{D}=10\widehat{E}=15\widehat{F}\)
a, So sánh các cạnh của tam giác DEF
b, Phân giác của góc E cắt DF tại M. So sánh DM và FM
Cho tam giác DEF vuông tại D có DE=5cm và DF=12cm. a)So sánh góc E và góc F của tam giác. b) Gọi M là trung điểm của cạnh EF.Tính độ dài đoạn thẳng DM. GIÚP TỚ VỚI.!
Cho tam giác ABC,biết A^+B^=120 độ,A^-B^=30 độ
a) So sánh các cạnh của tam giác
b)Tia phân giác của góc A cắt BC ở D .So sánh độ dài đoạn BD và CD
cho tam giác DEF cân tại E có ED=EF=17 cm, DF=16cm. Kẻ đường trung tuyến EH
a/ chứng minh rằng tam giác EDH= tam giác EFH và chỉ ra EH vuông góc với DF
b/ tính độ dài EH
c/hãy so sánh các góc của tam giác EHF
cho tam giác ABC vuông ở A , các tia phân giác BM và CN cắt nhau tại I .gọi DEF là hình chiếu của đỉnh I xuống các cạnh AB, BC , AC.
a, so sánh AN và BN , AM và CM .
b, CMR AD = AE .
c , tính độ dài các đoạn AD và AE biết AB = 8 cm ,AC = 15 cm.
d, trong trường hợp tam giác ABC cân tại A , hãy chứng minh tam giác DEF cân
so sánh các cạnh của tam giác DEF biết góc D =300 , góc F= 700
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
Cho tam giác ABC cân có BC= 8cm, góc C=30 độ. Kẻ AD là tia phân giác của góc A, kẻ DE vuông góc với AB, DF vuông góc AC.
a) tính góc BAC
b) tính độ dài cạnh AC,AB.AD
c) CMR: DE=DF
d) Tính góc EDF
e) tam giác DEF la tam giác gì
g) CMR: EF//BC
h)so sánh AF và CF