Bài 2 Cho tam giác MNP vuông tại M có MN = 9cm, MP = 12cm. Tia phân giác của
góc M cắt NP tại I.
a) Tính IN, IP.
b) Từ N vẽ tia song song với tia MI cắt tia PM tại O. Tính MO, NO.
tam giác MNP vuông tại M, MN = 36, MP = 48 cm ,tia phân giác MK .tia phân giác của góc N cắt MK tại H .qua H kẻ đường thẳng song song với NP, cắt MN và MP ở d và e
a, tính độ dài NK
b, tính tỉ số MH/MK
c, tính DE
a) Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(NP^2=MN^2+MP^2\)
\(\Leftrightarrow NP^2=36^2+48^2=3600\)
hay NP=60(cm)
Xét ΔMNP có MK là đường phân giác ứng với cạnh NP(gt)
nên \(\dfrac{NK}{MN}=\dfrac{KP}{MP}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{NK}{36}=\dfrac{KP}{48}\)
mà NK+KP=NP=60cm(K nằm giữa N và P)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{NK}{36}=\dfrac{KP}{48}=\dfrac{NK+KP}{36+48}=\dfrac{60}{84}=\dfrac{5}{7}\)
Do đó:
\(\dfrac{NK}{36}=\dfrac{5}{7}\)
hay \(NK=\dfrac{180}{7}cm\)
Vậy: \(NK=\dfrac{180}{7}cm\)
tam giác MNP vuông tại M, MN = 36, MP = 48 cm ,tia phân giác MK .tia phân giác của góc N cắt MK tại H .qua H kẻ đường thẳng song song với NP, cắt MN và MP ở d và e
a, tính độ dài NK
b, tính tỉ số MH/MK
c, tính DE
tam giác MNP vuông tại M, MN = 36, MP = 48 cm ,tia phân giác MK .tia phân giác của góc N cắt MK tại H .qua H kẻ đường thẳng song song với NP, cắt MN và MP ở d và e
a, tính độ dài NK
b, tính tỉ số MH/MK
c, tính DE
Cho tam giác MNP vuông tại M, MN=9cm, MP=12cm. Phân giác của gics M cắt NP tại I.
a) Tính IN, IP
b) Tính diện tích tam giác MNI
a: Ta có: ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(NP^2=9^2+12^2=225\)
=>\(NP=\sqrt{225}=15\left(cm\right)\)
Xét ΔMNP có MI là phân giác
nên \(\dfrac{IN}{MN}=\dfrac{IP}{MP}\)
=>\(\dfrac{IN}{9}=\dfrac{IP}{12}\)
=>\(\dfrac{IN}{3}=\dfrac{IP}{4}\)
mà IN+IP=NP=5cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IN}{3}=\dfrac{IP}{4}=\dfrac{IN+IP}{3+4}=\dfrac{5}{7}\)
=>\(IN=3\cdot\dfrac{5}{7}=\dfrac{15}{7}\left(cm\right);IP=5\cdot\dfrac{4}{7}=\dfrac{20}{7}\left(cm\right)\)
b: Diện tích tam giác MNP là:
\(S_{MNP}=\dfrac{1}{2}\cdot MN\cdot MP=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)
Ta có: \(\dfrac{IN}{3}=\dfrac{IP}{4}\)
=>\(\dfrac{IN}{IP}=\dfrac{3}{4}\)
=>\(\dfrac{IN}{IP+IN}=\dfrac{3}{7}\)
=>\(\dfrac{IN}{PN}=\dfrac{3}{7}\)
=>\(S_{MNI}=\dfrac{3}{7}\cdot S_{MNP}=\dfrac{3}{7}\cdot54=\dfrac{162}{7}\left(cm^2\right)\)
Cho tam giác MNP vuông tại M, Kẻ MI vuông góc với NP tại I. Vẽ MK là tia phân giác của
IMP (K∈IP). Đường thẳng đi qua K và vuông góc với MP, cắt MP tại A.
1) Chứng minh KM là tia phân giác IKA.
2) Chứng minh IK < KP.
3) Gọi giao điểm của AK và MI là B. Chứng minh MK⊥BP và IA//BP.
1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có
MK chung
góc IMK=góc AMK
=>ΔMIK=ΔMAK
=>góc IKM=góc AKM
=>KM là phân giác của góc AKI
2: KI=KA
KA<KP
=>KI<KP
3: Xét ΔMBP có
PI,BA là đường cao
PI cắt BA tại K
=>K là trực tâm
=>MK vuông góc PB
MI=MA
KI=KA
=>MK là trung trực của AI
=>MK vuông góc AI
=>AI//PB
Cho tam giác MNP vuông tại M có MN= 3cm , MP= 4cm . Tia phân giác góc M cắt ND tại I, từ I kẻ IH vuông góc MP ( H thuộc MP) A, chứng minh tam giác MNP đồng dạng tam giác HIP B, tính tỉ số IN/IP độ dài IN, IP và tính IH C, tính tỉ số S mni/S hid
a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có
góc P chung
=>ΔMNP đồng dạng với ΔHIP
b: IN/IP=MN/MP=3/4
=>IN/3=IP/4=(IN+IP)/(3+4)=5/7
=>IN=15/7cm; IP=20/7cm
IH//MN
=>IH/MN=PI/PN
=>IH/3=20/7:5=4/7
=>IH=12/7cm
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
d)\(\Delta AMC\)CÂN\(\Rightarrow AC=MC\)
\(\Delta MCN\)CÂN\(\Rightarrow MC=CN\)
=> AC=CN
=> AC LÀ TRUNG TUYẾN CỦA \(\Delta MAN\)
MÀ MP=AP => NP LÀ TRUNG TUYẾN CỦA\(\Delta MAN\)
HAI ĐƯOG TRUNG TUYẾN NÀY CẮT NHAU TẠI G
=> G LÀ TROG TÂM CỦA \(\Delta MAN\)
\(\Rightarrow NG=\frac{2}{3}NP\)
THAY \(\Rightarrow NG=\frac{2}{3}.5=\frac{10}{3}\approx3,3\left(cm\right)\)
cho tam giác MNP vuông tại M có MN=4cm;MP=3cm
a)tính đọ dài NP và so sánh các góc của tam giác MNP
b)Trên tia đối tia PM lấy A sao cho P là trung điểm của đoạn thẳng AM.QUa P dựng đường thẳng vuông góc với AM cắt AN tại C.C/m tam giác CPM=tam giác CPA
c)C/m CM=CN
d)GỌi G là giao điểm của MC và NP.TÍnh NG
e)Từ A vẽ đường thẳng vuông góc với NP tại D.Vẽ tia Nx là tia phân giác của góc MNP,vẽ tia Ay là tian pg của PAD,tia Ay cắt các tia NP,Nx,NM lần lượt tại E,H,K.C/m tam giác NEK cân
cho tam giác MNP vuông tại M có MN=4cm;MP=3cm
a)tính đọ dài NP và so sánh các góc của tam giác MNP
b)Trên tia đối tia PM lấy A sao cho P là trung điểm của đoạn thẳng AM.QUa P dựng đường thẳng vuông góc với AM cắt AN tại C.C/m tam giác CPM=tam giác CPA
c)C/m CM=CN
d)GỌi G là giao điểm của MC và NP.TÍnh NG
e)Từ A vẽ đường thẳng vuông góc với NP tại D.Vẽ tia Nx là tia phân giác của góc MNP,vẽ tia Ay là tian pg của PAD,tia Ay cắt các tia NP,Nx,NM lần lượt tại E,H,K.C/m tam giác NEK cân
7:Cho tam giác MNP vuông tại M ( ) MP MN . Kẻ tia phân giác của góc N cắt PM tại I. Từ P hạ đoạn thẳng PK vuông góc với tia phân giác NI ( K thuộc tia NI). a) Chứng minh MNI KPI ∽ ; b) Chứng minh INP IPK = ; c) Cho MN = 3cm, MP = 4cm. Tính IM.