Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm ngọc nhi
Xem chi tiết
nguyen hoang duong
Xem chi tiết
Phan
Xem chi tiết
Jin44
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2023 lúc 19:39

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

b: Ta có: ΔOAC cân tại O

mà OH là đường trung tuyến

nên OH\(\perp\)AC tại H

=>OD\(\perp\)AC tại H

Xét ΔDAO vuông tại A có AH là đường cao

nên \(OH\cdot OD=OA^2\)

=>\(4\cdot OH\cdot OD=4\cdot OA^2=\left(2\cdot OA\right)^2=BA^2\)

Nguyễn thị thúy Quỳnh
26 tháng 12 2023 lúc 18:01

a) Để chứng minh tam giác \(ABC\) vuông, ta cần chứng minh rằng góc \(ACB\) là góc vuông.

 

Vì \(C\) là một điểm trên đường tròn \((O)\) có đường kính \(AB\), nên ta có \(AC\) là tiếp tuyến của đường tròn tại điểm \(C\). Do đó, góc \(ACB\) là góc nội tiếp tương ứng với góc \(A\).

 

Vì \(AB\) là đường kính của đường tròn, nên góc \(A\) là góc vuông (\(90^\circ\)). Vì vậy, ta có thể kết luận rằng tam giác \(ABC\) là tam giác vuông.

 

b) Để chứng minh \(40OH = OD = AB/2\), ta cần chứng minh rằng tam giác \(OHD\) là tam giác đều.

 

Vì \(H\) là trung điểm của \(AC\), nên ta có \(OH\) là đường trung bình của tam giác \(ABC\). Do tam giác \(ABC\) là tam giác vuông (\(AB\) là đường kính), nên đường trung bình \(OH\) cũng là đường cao của tam giác \(ABC\).

 

Vì vậy, ta có \(OH\) vuông góc với \(AB\) tại \(D\). Vì \(OH\) là đường cao của tam giác \(ABC\), nên \(OD\) cũng là đường cao của tam giác \(OHD\).

 

Vì \(OH\) và \(OD\) là hai đường cao của tam giác \(OHD\), nên tam giác \(OHD\) là tam giác đều. Do đó, ta có \(40OH = OD = AB/2\).

 

c) Để chứng minh \(MB\) là tiếp tuyến của đường tròn \((O)\), ta cần chứng minh rằng góc \(MBO\) là góc vuông.

 

Vì \(OE\) là đường vuông góc với \(BD\) tại \(E\), nên \(OE\) là đường cao của tam giác \(OBD\). Vì \(OD\) là đường cao của tam giác \(OHD\) (tam giác đều), nên \(OE\) cũng là đường cao của tam giác \(OHD\).

 

Vì vậy, ta có \(OE\) vuông góc với \(HD\) tại \(D\). Vì \(HD\) là tiếp tuyến của đường tròn \((O)\) tại \(D\), nên góc \(MBO\) là góc nội tiếp tương ứng với góc \(D\).

 

Vì \(OD = AB/2\) (theo phần b), nên góc \(D\) là góc vuông (\(90^\circ\)). Vì vậy, ta có thể kết luận rằng \(MB\) là tiếp tuyến của đường tròn \((O)\).

giabao tran
Xem chi tiết
TAU TAU
Xem chi tiết
cao thi hoai an
Xem chi tiết
Nguyễn Phương Tâm
Xem chi tiết
Poon Phạm
Xem chi tiết
Thông
18 tháng 9 2016 lúc 16:51

Cần giải thì liên lạc face 0915694092 nhá

thảo
7 tháng 12 2017 lúc 21:06

giúp tôi trả lời tất cả câu hỏi đề này cái

Vân Quách
Xem chi tiết