(m-1)x=\(m^2\)-1
a)xác định m để pt trên là pt bậc nhất
b)hãy giải và biện luận pt trên
cho pt : \(x^2-2\left(m+1\right)x+2m+10=0\)
a) Giải và biện luận về số nghiệm của pt
b) Trong trường hợp pt có 2 nghiệm phân biệt là x1; x2; hãy tìm 1 hệ thức liên hệ giữa x1; x2 mà ko phụ thuộc vào m
c) Tìm giá trị của m để \(P=10x_1x_2+x_1^2+x_2^2\)đạt GTNN
d) Xác định m để pt có 2 nghiệm phân biệt âm
e) Xác định m để PT có 2 nghiệm trái dấu
cho pt bậc hai ẩn x : \(2x^2+2mx+m^2-2=0\)
a) xác định m để pt có 2 nghiệm.
b) gọi x1,x2 là nghiệm của pt trên tìm giá trị lớn nhất của biểu thức: A=\(\left|2x_1x_2+x_1+x_2-4\right|\)
a, Phương trình có hai nghiệm khi
\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)
b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(A=\left|2x_1x_2+x_1+x_2-4\right|\)
\(=\left|m^2-2-m-4\right|\)
\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)
\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)
\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
cho pt x² - 2(2m-1)x+4m²=0 a) xác định m để pt có 2 nghiệm phân biệt b) xác định m để pt vô nghiệm c) giải pt với m=2 Mọi người giúp em với ạ.
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
cho pt 5x2-3x+m-1=0
a) giải pt vs m=-7
b) tìm m để pt có 1 nghiệm x1=3/2
c) tìm m để pt có 2 nghiệm phân biệt
d) giairvaf biện luận pt theo m
a.
⇔ \(5x^2-3x+\left(-7\right)-1=0\)
⇔ \(5x^2-3x-8=0\)
Δ=\(b^2-4ac\) \(=\left(-3\right)^2-4.5.\left(-8\right)=169\)>0
Vì Δ>0 nên pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{169}}{2.5}=\dfrac{8}{5}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{169}}{2.5}=-1\)
cho pt bậc 2 : ax^2+bx+c=0 có 2 nghiệm phân biệt thỏa mãn
X1+x2-2.X1x2=0
mx1x2-(x1+x2)=2m+1
a) tìm pt bậc hai trên với m là tham số
b)xác định m để phương trình bậc 2 trên có 2 nghiệm dương phân biệt
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
1. Tìm m để pt sau có nghiệm.
Căn bậc hai của[ (x^2)+x+1] -căn bậc hai của [(x^2)-x+1]=m.
2. Biện luận theo m số nghiệm pt.
Căn bậc hai (x-1) + căn bậc hai (3-x) - căn bậc hai [(x-1)(3-x)]=m
1. Tìm m để pt sau có nghiệm.
Căn bậc hai [(x^2)+x+1]- căn bậc hai [(x^2)-x+1]=m
2. Biện luận theo m số nghiệm pt.
Căn bậc hai (x-1) + căn bậc hai (3-x) - căn bậc hai [(x-1)(3-x)]=m.
Câu 1:
\(f\left(x\right)=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}=m\)
Tọa độ hóa bài toán bằng cách gọi \(A\left(-\frac{1}{2};\frac{\sqrt{3}}{2}\right)\) và \(B\left(\frac{1}{2};\frac{\sqrt{3}}{2}\right)\) là hai điểm cố định trên mặt phẳng tọa độ Oxy, M là điểm di động có tọa độ \(M\left(x;0\right)\)
\(\Rightarrow AM=\left|\overrightarrow{AM}\right|=\sqrt{\left(x+\frac{1}{2}\right)^2+\left(0-\frac{\sqrt{3}}{2}\right)^2}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)
\(BM=\left|\overrightarrow{BM}\right|=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\)
\(\Rightarrow f\left(x\right)=AM-BM\)
Mặt khác, theo BĐT tam giác ta luôn có
\(\left|AM-BM\right|< AB=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)^2}=1\)
\(\Rightarrow\left|f\left(x\right)\right|< 1\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)
Câu 2:
ĐKXĐ: \(1\le x\le3\)
Đặt \(\sqrt{x-1}+\sqrt{3-x}=a\ge0\)
Áp dụng BĐT Bunhiacốpxki:
\(\Rightarrow a\le\sqrt{\left(1+1\right)\left(x-1+3-x\right)}=2\sqrt{2}\)
Mặt khác
\(a^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\ge2\)
\(\Rightarrow2\le a\le3\)
Cũng từ trên ta có:
\(a^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(3-x\right)}=\frac{a^2-2}{2}=\frac{1}{2}a^2-1\)
Phương trình trở thành:
\(a-\left(\frac{1}{2}a^2-1\right)=m\)
\(\Leftrightarrow-\frac{1}{2}a^2+a+1=m\)
Xét hàm \(f\left(a\right)=-\frac{1}{2}a^2+a+1\) trên \(\left[2;2\sqrt{2}\right]\)
\(f'\left(a\right)=-a+1< 0\) \(\forall a\in\left[2;2\sqrt{2}\right]\)
\(\Rightarrow f\left(a\right)\) nghịch biến trên \(\left[2;2\sqrt{2}\right]\)
\(\Rightarrow f\left(2\sqrt{2}\right)\le f\left(a\right)\le f\left(2\right)\Rightarrow-3+2\sqrt{2}\le f\left(a\right)\le1\)
Vậy:
- Nếu \(\left[{}\begin{matrix}m>1\\m< -3+2\sqrt{2}\end{matrix}\right.\) thì phương trình vô nghiệm
- Nếu \(-3+2\sqrt{2}\le m\le1\) pt có nghiệm
cho hệ pt \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\)
a, giải hệ pt khi m= 3
b, giải và biện luận hệ pt theo m
c, c/m rằng khi hệ có nghiệm duy nhất (x;y)thì M(x;y) luôn nằm trên 1 đường thẳng cố định khi mnhaanj các gt khác nhau